Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dunkle Wolken, junge Sterne und ein Schuss Hollywood

30.10.2012
Ein astronomisches Projekt unter Leitung von Forschern des Max-Planck-Instituts für Astronomie (MPIA) hat neue Einblicke in die frühesten Phasen der Sternentstehung gewonnen.

Mit Hilfe des ESA-Weltraumteleskops Herschel und mit Auswertungstechniken, die man häufiger bei Hollywood-Filmproduktionen antrifft als in der Astronomie, konnten die Forscher eine dreidimensionale Karte der Dunkelwolke B68 erstellen, die Geburtsort eines Sterns niedriger Masse werden könnte.


Falschfarbenbild der Dunkelwolke Barnard 68 aus Daten des Weltraumteleskops Herschel bei unterschiedlichen Wellenlängen im Ferninfrarotbereich. Die scheinbare Form der Wolke ändert sich in Abhängigkeit von der Wellenlänge in einer Weise, die auf ungleichmäßige Beleuchtung durch eine äußere Quelle hindeutet. Rechts unten ist in einem kleinen Ausläufer eine eng begrenzte Struktur zusehen. Dies könnte ein Wolkenfragment sein, das gerade mit Barnard 68 kollidiert.
Bild: MPIA/M. Nielbock

In weiteren, sehr massereichen Dunkelwolken konnten die Forscher außerdem eine frühe Vorläuferform junger Sterne identifizieren, die noch nie zuvor beobachtet wurde.

Sterne werden geboren, wenn Wolken von Gas und Staub unter ihrer eigenen Schwerkraft kollabieren. Die Wolken liefern allerdings nicht nur das Rohmaterial für die Sternentstehung, sondern absorbieren auch einen Großteil des Lichts, das im Wolkeninneren entsteht, und entziehen die entscheidenden Details der Sterngeburt auf diese Weise den Blicken der Astronomen. Diese müssen sich daher einiges einfallen lassen, um die Sternentstehung zu erforschen.

Jetzt haben zwei Gruppen im sogenannten EPoS-Projekt (»Earliest Phases of Star formation«, Leitung: Oliver Krause, MPIA) mit Hilfe des Herschel-Weltraumteleskops der europäischen Weltraumagentur ESA tiefer und genauer als je zuvor in das Innere einiger der Dunkelwolken hineingeblickt, in denen Sterne entstehen – und dabei einiges Neues über Sterngeburten herausgefunden.

Auf der Suche nach dem Ursprung von Sternen mit niedriger Masse (sprich: weniger als dem Doppelten der Masse unserer Sonne) hat sich eine Gruppe von Astronomen unter der Leitung von Markus Nielbock (MPIA) eine der bestuntersuchten potenziellen Sternkinderstuben vorgenommen: die Dunkelwolke Barnard 68 im Sternbild Schlangenträger (lat. Ophiuchus). Die Wissenschaftler machten sich die Fähigkeiten des Weltraumteleskops Herschel zunutze, Aufnahmen in nie erreichter Empfindlichkeit und Detailschärfe im Bereich des Ferninfrarotlichts anzufertigen. Dann wandten sie eine Methode an, die man häufiger als in der Astronomie in Spezialstudios findet, die für Hollywoodfilme computergenerierte Bilder erstellen. So entstand das bislang realistischste 3D-Modell der Dunkelwolke.

Die Methode, die von Ralf Launhardt (MPIA) an die Erfordernisse der Astronomen angepasst wurde, ist das sogenannte Raytracing (wörtlich »Strahlverfolgung«). Dazu wurde jeder Lichtstrahl, der uns von Barnard 68 erreicht, per Computer virtuell in die Wolke zurückverfolgt; an jedem Ort, den der Strahl passiert, berücksichtigt das Computerprogramm dann, ob dort Licht ausgesandt, absorbiert oder gestreut wird, und welche Wellenlängen das betreffende Licht hat. Addiert man alle diese Beiträge auf, ergibt sich aus einem dreidimensionalen Wolkenmodell das zweidimensionale Bild, das ein Astronom aus der Ferne beobachten kann. Umgekehrt lässt sich die Technik einsetzen, um mit Hilfe vereinfachender Zusatzannahmen von dem Licht verschiedener Wellenlängen, das uns von Barnard 68 erreicht, auf ein Modell der dreidimensionalen Struktur der Wolke, ihrer Dichte- und Temperaturverteilung zu schließen.

Die Ergebnisse haben einiges von dem ins Wanken gebracht, das Astronomen über Barnard 68 zu wissen glaubten. Es ergibt sich ein Bild von Barnard 68 als Wolke, die aus dem Kollaps eines länglichen Filaments entstanden sein dürfte und durch ungleichmäßige Strahlung, die vor allem aus der Scheibenebene unserer Heimatgalaxie stammt, aufgeheizt wird. Die Astronomen fanden außerdem Anzeichen für eine weitere kleine Wolke, die mit Barnard 68 kollidiert und deren Existenz in einer früheren Studie vorausgesagt worden war (Burkert & Alves 2009). Die Kollision könnte den Kollaps von Barnard 68 einleiten, und innerhalb der nächsten Hunderttausende von Jahren könnten darin einer oder mehrere Sterne mit geringer Masse geboren werden.

Verglichen mit anderen Dunkelwolken ist Barnard 68 recht klein. In Wolken dieser Größe werden höchstens einige wenige massearme Sterne entstehen. Zur Erforschung der Entstehung massereicher Sterne hat eine weitere EPoS-Gruppe unter der Leitung von Sarah Ragan (MPIA) 45 deutlich massereichere Dunkelwolken beobachtet. Solche Wolken enthalten zahlreiche sogenannte »Protosterne«, Sternen-Embryos, aus denen sich im Laufe der Zeit neue Sterne entwickeln. Protosterne waren bereits das Beobachtungsziel früherer Missionen, etwa des NASA-Weltraumteleskops. Mit der PACS-Kamera des Herschel-Teleskops konnten die Forscher um Ragan allerdings deutlich tiefer ins Wolkeninnere vordringen. So gelang es ihnen, die jüngsten und primitivsten derzeit bekannten Protosterne zu finden.

Durch die neuen Beobachtungen wuchs die Zahl der bekannten Protosterne in den betreffenden Wolken von 330 auf knapp 500 an. Am spannendsten ist dabei die Entdeckung eines neuen Typs von Sternenvorläufers: dichtere Regionen mit einer Temperatur von bloßen 15 Grad über dem absoluten Nullpunkt (-258 Grad Celsius), in denen kein Protostern nachzuweisen ist. Dabei dürfte es sich um die frühesten Stadien der Sternentstehung handeln. Den Modellen zufolge entsteht in solchen Regionen auf der astronomisch gesehen sehr kurzen Zeitskala von weniger als 1000 Jahren ein neuer Protostern. Nähere Untersuchungen dieser Regionen dürften die Grundlagen für alle weiteren Studien zur Sternentstehung legen.

Kontakt

Markus Nielbock (Erstautor des Artikels über Barnard 68)
Max-Planck-Institut für Astronomie
Tel.: (+49|0) 6221 – 528 445
E-Mail: nielbock@mpia.de
Sarah Ragan (Erstautorin des Artikels über massereiche Sterne)
Max-Planck-Institut für Astronomie
Tel.: (+49|0) 6221 – 528 458
E-Mail: ragan@mpia.de
Markus Pössel (Öffentlichkeitsarbeit)
Max-Planck-Institut für Astronomie
Tel.: (+49|0) 6221 – 528 261
E-Mail: pr@mpia.de

Dr. Markus Pössel | Max-Planck-Institut
Weitere Informationen:
http://www.mpia.de
http://www.mpia.de/Public/menu_q2.php?Aktuelles/PR/2012/PR121030/PR_121030_de.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Blick ins Universum
15.01.2018 | Georg-August-Universität Göttingen

nachricht Extrem helle und schnelle Lichtemission
11.01.2018 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Wie Metallstrukturen effektiv helfen, Knochen zu heilen

Forscher schaffen neue Generation von Knochenimplantaten

Wissenschaftler am Julius Wolff Institut, dem Berlin-Brandenburger Centrum für Regenerative Therapien und dem Centrum für Muskuloskeletale Chirurgie der...

Im Focus: Extrem helle und schnelle Lichtemission

Eine in den vergangenen Jahren intensiv untersuchte Art von Quantenpunkten kann Licht in allen Farben wiedergeben und ist sehr hell. Ein internationales Forscherteam mit Beteiligung von Wissenschaftlern der ETH Zürich hat nun herausgefunden, warum dem so ist. Die Quantenpunkte könnten dereinst in Leuchtdioden zum Einsatz kommen.

Ein internationales Team von Wissenschaftlern der ETH Zürich, von IBM Research Zurich, der Empa und von vier amerikanischen Forschungseinrichtungen hat die...

Im Focus: Paradigmenwechsel in Paris: Den Blick für den gesamten Laserprozess öffnen

Die neusten Trends und Innovationen bei der Laserbearbeitung von Composites hat das Fraunhofer-Institut für Lasertechnik ILT im März 2018 auf der JEC World Composite Show im Fokus: In Paris demonstrieren die Forscher auf dem Gemeinschaftsstand des Aachener Zentrums für integrativen Leichtbau AZL unter anderem, wie sich Verbundwerkstoffe mit dem Laser fügen, strukturieren, schneiden und bohren lassen.

Keine andere Branche hat in der Öffentlichkeit für so viel Aufmerksamkeit für Verbundwerkstoffe gesorgt wie die Automobilindustrie, die neben der Luft- und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Tagung „Elektronikkühlung - Wärmemanagement“ vom 06. - 07.03.2018 in Essen

11.01.2018 | Veranstaltungen

Registrierung offen für Open Science Conference 2018 in Berlin

11.01.2018 | Veranstaltungen

Wie sieht die Bioökonomie der Zukunft aus?

10.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mit mikroskopischen Luftblasen dämmen

15.01.2018 | Architektur Bauwesen

Feldarbeiten der größten Bodeninventur Deutschlands sind abgeschlossen

15.01.2018 | Agrar- Forstwissenschaften

Perowskit-Solarzellen: Es muss gar nicht perfekt sein

15.01.2018 | Materialwissenschaften