Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dunkelfelder verraten Störenfriede

17.05.2013
Mit Hilfe einer neuen Art der medizinischen Röntgenbildgebung haben Physiker der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) in Zusammenarbeit mit Kollegen aus der Frauenheilkunde, Radiologie und Pathologie im Universitätsklinikum Erlangen Erstaunliches sichtbar gemacht.

In Gewebeproben von Brusttumoren konnten Kalkablagerungen, die mit der Entstehung von Krebs in Verbindung gebracht werden, bereits ab Durchmessern von wenigen Mikrometern nachgewiesen werden. Die Arbeitsgruppe „Radiation Physics“ (Leitung Prof. Dr. Gisela Anton) hat dazu das Dunkelfeld der neuen Methode eingesetzt. Damit werden deutlich kleinere Kalzifikationen als bisher für Diagnostiker zugänglich.


Die drei Bilder (von oben nach unten: Absorp­tionsbild, Phasenbild und Dunkelfeldbild) zeigen operativ entferntes Brustgewebe mit einem Karzinom, das im Dunkelfeld im oberen Drittel nahe der Bildmitte als diffuser heller Fleck deutlich zu erkennen ist. Die kleineren, sehr hellen und scharf umrandeten weißen Flecken sind große Kalzifikationen von ca. 1mm Durchmesser, die auch im Absorptionsbild erkennbar sind.
Abbildung: FAU

Mittels Röntgenstrahlen kann die unterschiedliche Zusammensetzung verschiedener Körpergewebe hervorgehoben werden. Es entstehen „Schattenbilder“, auf denen sich etwa Knochen deutlich von Muskeln abheben, weil diese Gewebetypen die Strahlung nicht im selben Maße schwächen. Bei der sogenannten Phasenkontrast-Röntgenbildgebung wird jedoch ein weiterer Effekt der Röntgenstrahlung genutzt: die Ablenkung an Gewebegrenzflächen.

Dieses Bildgebungsverfahren erforscht die Arbeitsgruppe am Lehrstuhl für Teilchen- und Astroteilchenphysik des Erlangen Centre for Astroparticle Physics (ECAP) seit 2009 zusammen mit Siemens Healthcare und dem Karlsruhe Institut für Technologie (KIT). Eine spezielle Anordnung von drei Gittern zwischen Röntgenröhre und Detektor sorgt dafür, dass die Strahlen einander überlagern und ein Interferenzmuster erzeugen, das sich regelmäßig wiederholt: ein periodisches Phasen- und Intensitätsmuster.

Sehr kleine Objektstrukturen können dieses Muster stören und ein sogenanntes Dunkelfeld hervorrufen. Auch wenn die Strahlung nur äußerst gering abgelenkt wird, ist am Detektor bereits lokal eine Veränderung zu messen. An feinkörnigen Objekten mit sehr vielen Grenzflächen brechen sich die Strahlen mehrfach, und dementsprechend ungleichmäßig wird das Intensitätsmuster. In werkstoffwissenschaftlichen Analysen tritt das Phänomen der Dunkelfelder beispielsweise bei Fasern oder Schäumen auf. Aber auch feine Körnchen aus Kalziumphosphat im menschlichen Gewebe bewirken eine derartige Ablenkung.

Im Rückgriff darauf konnten nun erstmals Kalkablagerungen mit Abmessungen von wenigen Mikrometern ins Bild geholt werden. Die Gegenprobe gelang über von Pathologen angefertigte Tumorgewebeschnitte. Die Physiker vermaßen Kalzifikationen, die in der Vergrößerung unter dem Mikroskop sichtbar waren, und wiesen nach, dass deren Dunkelfeldsignale, wenn sie per Simulationsrechnung ermittelt werden, den realen Messergebnissen im Dunkelfeldbild entsprechen. Durch diese wissenschaftlich stringente Nachweismethode wird die Dunkelfeldbildgebung nun zu einer quantitativen Beobachtungsmethode.

Seit Januar diesen Jahres wird die Erforschung der Röntgen-Dunkelfeldbildgebung für die Mammographie im Rahmen des Spitzencluster Medical Valley gefördert. In diesem Projekt gilt es heraufzufinden, welche diagnostische Bedeutung die Detektion von solch feinen Kalkablagerungen hat. Man weiß zwar bereits, dass zwischen Kalzifikationen und Brustkrebs Zusammenhänge bestehen können; allerdings war die Beobachtung bisher nur für Körnchen möglich, die um das Hundertfache größer sind. Zu klären ist nun etwa, ob fein verteilter Mikrokalk Hinweise auf Stadium und Typus eines Mammakarzinoms gibt. Mediziner und Physiker sind gleichermaßen gespannt, welche weiterführenden Erkenntnisse sich mit der neuen Methode ergeben.

Die Mammographie ist vielleicht nur eine von mehreren künftigen Anwendungsmöglichkeiten. Deshalb sollen die Untersuchungen auf weitere Fragen ausgedehnt werden, wie Osteoporose- und Arthrose-Erkennung, die Suche nach Fremdkörpern in Wunden oder das Feststellen von Lungenkrankheiten. Ob die neue Methode Einzug in die Radiologie finden wird, hängt neben der Lösung physikalisch-technischer Herausforderung entscheidend vom Diagnosepotenzial ab. Eine weitere intensive Zusammenarbeit von Medizinern und Physikern ist also gefragt.

Informationen für die Medien:
Prof. Dr. Gisela Anton
Tel.: 09131/85-27151
gisela.anton@physik.uni-erlangen.de

Blandina Mangelkramer | idw
Weitere Informationen:
http://www.uni-erlangen.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise