Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der dünnste Draht der Welt

14.01.2009
Er ist aus Gold gemacht und eine Million Mal feiner als das Haar eines Menschen: der dünnste Draht der Welt. Physiker der Universität Würzburg können ihn herstellen. Sie hoffen, dass er dank seiner verblüffenden Eigenschaften später einmal den Boden bereitet für Neuerungen in der Technik. Neues aus der Welt der Nanodrähte berichten sie im Fachblatt Physical Review Letters.

Die winzigen Drähte entstehen am Lehrstuhl von Ralph Claessen. "Wir dampfen Goldatome auf Plättchen aus Germanium auf, die einen Zentimeter lang und drei Millimeter breit sind. Das geschieht im Ultrahochvakuum bei 500 Grad Celsius", erklärt Privatdozent Jörg Schäfer im Labor.


Schön parallel verlaufen die Gold-Nanodrähte, die in der Würzburger Physik erzeugt werden. Jeder \"Hügel\" in den Reihen entspricht einem einzelnen Atom. Das Bild wurde mit einem Rastertunnelmikroskop erzeugt. Aufnahme: Lehrstuhl für Experimentelle Physik IV, Universität Würzburg

Dank eines ausgeklügelten Verfahrens können die Würzburger Physiker die Plättchen so bestücken, dass die Goldatome sich von ganz alleine zu geradlinigen, parallel verlaufenden Ketten anordnen: Fertig sind die Nanodrähte. Die liegen weit genug voneinander entfernt, um sich nicht gegenseitig zu beeinflussen - für ihre weitere Erforschung ist das wichtig.

Nanodrähte: Mögliche Anwendungen

Wozu die Drähte gut sind? "Sie bestehen aus einzelnen Atomen, und kleinere elektrische Leitungsbahnen kann man prinzipiell nicht bauen", sagt Jörg Schäfer. Darum lassen sich aus den Nanodrähten vielleicht Bauelemente realisieren, die die Miniaturisierung von Computern an die Grenze treiben. Mit ihrer Arbeit später einmal den kleinsten Quantencomputer der Welt zu demonstrieren - das ist eine Vision, die den Würzburger Physikern gefällt.

Derzeit aber benutzen sie die Nanodrähte vorrangig als atomare Spielwiese. "Wir können die Drähte an den Seiten um einzelne Goldatome erweitern. Oder gezielt Querbrücken zwischen ihnen schaffen. Und dann analysieren, wie sich dadurch die elektronischen Eigenschaften ändern", erläutert Professor Claessen.

Das nächste Ziel? Die Würzburger hoffen darauf, die elektrische Leitfähigkeit der Nanodrähte beeinflussen zu können. "Das ist mit zusätzlichen Atomen möglich. Über die Spitze eines Rastertunnelmikroskops kann man aber auch elektrische Ladung in einen Draht hineintupfen. So könnte es gelingen, ihn kontrolliert auszuschalten. Entfernt man das zusätzliche Atom oder lässt die störende Ladung abfließen, wäre der Draht wieder angeschaltet", sagt Schäfer. Falls das funktioniert? Dann wäre schon einmal eine Grundvoraussetzung gegeben, um Nanodrähte als Bauteile für Quantencomputer verwenden zu können.

Verblüffende Phänomene in Nanostrukturen

Die elektrische Schaltung der Nanodrähte kann aber auch zu neuen, eher grundlegenden Erkenntnissen führen. Denn je kleiner ein Festkörper gemacht wird, desto größer sind die Überraschungen, die er birgt. "In Nanostrukturen treten viele verblüffende Phänomene auf, die unserer Intuition als Physiker widersprechen", so Schäfer.

Woran das im Fall der Nanodrähte liegt? Die sind derart winzig, dass sich die Elektronen, die Träger der elektrischen Ladung, nur auf einem sehr eng begrenzten Pfad bewegen können - nämlich entlang der Drähte. In einem gewöhnlichen Stück Metall können die Elektronen viele verschiedene Richtungen einschlagen. Wenn aber die Elektronen auf engstem Raum eingesperrt werden, so dass sie einander nicht ausweichen können, treten ungewöhnliche Quanteneffekte auf. Davon kann vor allem die elektrische Leitfähigkeit betroffen sein.

Ein Modell für Luttinger-Flüssigkeiten?

Die Würzburger Physiker meinen, dass ihre Nanodrähte ein neuartiges Modellsystem für eindimensionale Elektronenflüssigkeiten darstellen. Konkret hoffen sie auf die Beobachtung einer so genannten Luttinger-Flüssigkeit. So bezeichnen die Physik-Theoretiker Elektronen, die sich nur in einer Dimension bewegen können - in diesem Fall in der Längsrichtung der Nanodrähte.

"Es ist aber sehr schwierig, die von den Theoretikern vorhergesagten Eigenschaften der Luttinger-Flüssigkeit mit Experimenten nachzuweisen", sagt Schäfer. "Doch wir haben jetzt erste Hinweise gefunden. Erfreulicherweise bleiben die neuartigen Nanodrähte auch bei den erforderlichen tiefen Temperaturen im leitfähigen Zustand, was die entsprechenden Messungen mit Tunnelspektroskopie erst möglich macht."

Ihre Argumente beschreiben die Würzburger detailliert in einem Beitrag für das Fachblatt Physical Review Letters. Die Herausgeber messen dem Artikel aus Würzburg eine besondere Bedeutung bei und heben ihn darum als Editors' Suggestion hervor: Das soll den Lesern signalisieren, dass der Bericht für alle Sparten der Physik von besonderem Interesse ist.

"New Model System for a One-Dimensional Electron Liquid: Self-Organized Atomic Gold Chains on Ge(001)", J. Schäfer, C. Blumenstein, S. Meyer, M. Wisniewski und R. Claessen, Phys. Rev. Lett. 101, 236802 (2008), doi 10.1103/PhysRevLett.101.236802

Robert Emmerich | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Berührungslose Schichtdickenmessung in der Qualitätskontrolle

25.04.2017 | Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

3. Bionik-Kongress Baden-Württemberg

24.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neuer Blue e+ Chiller von Rittal - Exakt regeln und effizient kühlen

25.04.2017 | HANNOVER MESSE

RWI/ISL-Containerumschlag-Index: Kräftiger Anstieg setzt sich fort

25.04.2017 | Wirtschaft Finanzen

Pharmacoscopy: Mikroskopie der nächsten Generation

25.04.2017 | Medizintechnik