Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Drahtinspektion – schnell wie Usain Bolt

02.04.2014

Rohre, Schienen oder Drähte werden mit hohen Geschwindigkeiten gefertigt. Ein neues optisches Inspektionssystem überprüft Werkstücke bei 10 Metern pro Sekunde und findet in Echtzeit Defekte, die so dünn sind, wie ein Haar.

Der Drahtrohling schießt aus dem Ziehstein, der ihn in die gewünschte Form bringt. Bis zu 10 Meter pro Sekunde ist das Werkstück schnell – und kann damit fast mit Weltrekord-Sprinter Usain Bolt mithalten.


Beim Drahtinspektionssystem WIRE-AOI liefern vier Kameras zusammen 40 000 ausgewertete Bilder pro Sekunde. So gelingt auch bei sehr schnellen Produktionsabläufen eine 100-prozentige Kontrolle der Drahtoberfläche in Echtzeit.

© Fraunhofer IPM

Bei diesen Geschwindigkeiten war an eine vollständige Inline-Inspektion, der Prüfung des Werkstücks innerhalb der Produktionsabläufe, nicht zu denken – bisher. Forscher des Fraunhofer-Instituts für Physikalische Messtechnik IPM in Freiburg haben diese technologische Lücke jetzt geschlossen. Ihr optisches Inspektionssystem WIRE-AOI kann Defekte bei Bahnwaren in Echtzeit aufspüren. Bahnwaren sind lange Werkstücke wie Rohre, Schienen, Drähte oder Bretter, die bei hohen Fließgeschwindigkeiten gefertigt werden.

Das Inspektionssystem erkennt Mikrodefekte, die mit 10 Metern pro Sekunde an ihm vorbeijagen und nicht dicker sind als ein menschliches Haar. Arbeiter sehen die Fehler dann graphisch aufbereitet auf einem Monitor und können die entsprechenden Stücke entfernen. Das System merkt sich den Ort des Defekts und speichert das dazugehörige Kamerabild in einer Datenbank ab. Hersteller von Bahnwaren können so während der Produktion Defekte erkennen, klassifizieren und dokumentieren.

Zum Beispiel indem sie auf ihre eigene Fertigung angepasste Schwellwerte für Tiefe, Breite und Länge von Oberflächenfehlern festlegen. Überschreitet das Werkstück diese, schlägt die Software optisch und akustisch Alarm.

10 000 Bilder pro Sekunde

Vier Hochgeschwindigkeitskameras liefern die Bilder der Defekte. Jede einzelne ist in der Lage, 10 000 Bilder pro Sekunde zu schießen und diese in Echtzeit zu verarbeiten. »Nur wenige Modelle für die industrielle Kamerainspektion können diese Anzahl von Bildern überhaupt aufzeichnen, geschweige denn in Echtzeit auswerten«, so Dr. Daniel Carl, Gruppenleiter Inline-Messtechnik am IPM. Voraussetzung für diese Spitzenleistung sind zellulare neuronale Netze. »Das heißt, jedes Pixel ist selbst ein eigener Rechner. Um diese zu programmieren, benötigt man Spezialwissen über parallele Rechnerarchitekturen, über das wir am IPM verfügen.« Erst die entsprechende Software versetzt das System in die Lage, die von der Kamera geschossenen Bilder zu analysieren.

Eine von Carls Forscherteam entwickelte LED-Beleuchtung bringt Schärfe in die Kamerabilder. Ihr Licht strahlt in einer 5 millionstel Sekunde so hell wie 100 Sonnen und blitzt 10 000-mal pro Sekunde. »Das ist wie bei normalen Fotos: Je heller das Licht und je kürzer die Belichtungszeit, desto schärfer sind die Aufnahmen von sich bewegenden Objekten. Das Bild verschwimmt nicht, da sich in so kurzer Zeit im Prinzip nichts bewegt – auch bei Geschwindigkeiten von bis zu 10 Metern pro Sekunde«, so Carl. Das menschliche Auge nimmt diese sehr kurze Belichtungszeit kaum war. Das System ist daher trotz der extremen Helligkeit ungefährlich für die Netzhaut. Außerdem wichtig: ein robustes Gehäuse. Denn bei der Fertigung von Bahnwaren geht es ruppig zu. Zum Beispiel bei der Drahtproduktion: Die Rohlinge werden gewalzt oder durch Ziehsteine gezogen, es kann schmutzig sein oder die Anlage vibriert. Das Inspektionssystem befindet sich mit seinen sensiblen elektronischen und optischen Bauteilen mitten in der Produktionsstraße. »Die Werkstücke wandern förmlich direkt durch es hindurch«, beschreibt Carl.

Kleiner Fehler, große Wirkung

Den Anstoß zur Entwicklung des robusten, sehr schnellen und genauen Inspektionssystems gaben die Kollegen vom benachbarten Fraunhofer-Institut für Werkstoffmechanik IWM. »Deren Metier ist die Werkstoffprüfung, unter anderem von Drähten. Es fiel auf, dass diese viele und sehr unterschiedliche Defekte haben können, wenn sie industriell gefertigt werden, dass ein Inline-Inspektionssystem aber bisher fehlte«, sagt Carl, in dessen Gruppe der erste Prototyp entwickelt wurde. Schon kleinste Oberflächenfehler – nicht größer als einige Mikrometer – können unerwünschte Folgen haben: Entweder bereits in der Produktion, wenn die kaputten Drähte weiter verarbeitet werden und die Maschinen zum Stillstand bringen. Oder als Teil des Endprodukts, wenn sie dessen Funktion stören. Ein Beispiel sind fehlerhafte Drahtfedern in Motorventilen, die bis zum Motorschaden führen können.

Das Inspektionsverfahren ist bereits so ausgereift, dass die Wissenschaftler es inzwischen Drahtziehern anbieten. Die Technologie ist bereits seit längerem erfolgreich im Einsatz, mehrere weitere Projekte sind geplant. Wer sich selbst ein Bild machen möchte: Die IPM-Forscher zeigen ihre superschnelle Drahtinspektion auf der wire vom 7. bis 11. April 2014 in Düsseldorf (Halle EN/08), auf der Control vom 6. bis 9. Mai 2014 in Stuttgart (Halle 1, Stand 1502) und auf dem Branchentag Draht am 8. Mai 2014 in Iserlohn.

Dr. Daniel Carl | Fraunhofer Forschung Kompakt
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2014/April/drahtinspektion.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie