Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Double-Chooz-Detektor gefüllt und Beginn der Messung von Reaktor-Neutrino-Oszillationen

23.12.2010
Kürzlich haben die Wissenschaftler und Techniker der Double-Chooz-Kollaboration ihren Neutrino-Detektor fertig gestellt, der Antineutrinos aus dem Kernkraftwerk Chooz in den französischen Ardennen beobachten wird. Das Experiment kann jetzt mit der Messung fundamentaler Neutrino-Eigenschaften beginnen, was wichtige Konsequenzen für die Teilchen- und Astroteichenphysik haben wird.

Neutrinos sind elektrisch neutrale Elementarteilchen, von denen es drei Sorten plus Antiteilchen gibt. Sie wurden 1930 vorhergesagt, aber erst 1956 nachgewiesen, weil sie kaum mit anderen Teilchen in Wechselwirkung treten und Materie fast ungehindert durchdringen. Zu ihrem Nachweis sind daher große und empfindliche Detektoren erforderlich.


Überblick über das Double-Chooz-Experiment mit den beiden Detektoren am Kernkraftwerk. (Bild: Double-Chooz-Kollaboration)

Neutrinos haben die merkwürdige Eigenschaft, sich im Flug ineinander umwandeln zu können. Dieser „Neutrino-Oszillation“ genannte Effekt bedeutet, dass Neutrinos im Widerspruch zum Standardmodell der Teilchenphysik eine – wenn auch geringe – Masse haben. Diese bedeutende Entdeckung der späten 1990er Jahre wurde in den Physiknobelpreis 2002 eingeschlossen. Die Oszillationen werden mit drei Mischungsparametern beschrieben, von denen zwei groß sind und bereits gemessen werden konnten. Für den dritten wesentlich kleineren Parameter, „theta13“ genannt, hat das Vorgängerexperiment in Chooz eine obere Grenze gefunden. Der neue Double-Chooz-Detektor ist das erste einer neuen Generation von Reaktorneutrino-Experimenten, die das Ziel haben, diesen fundamentalen Parameter der Neutrinophysik zu messen. Die Messungen sollen grundlegende Eigenschaften der Neutrinos erkunden und sind ein Schlüsselexperiment der teilchenphysikalischen Forschung.

Double Chooz besteht aus zwei identischen Detektoren. Der erste, der etwa 1 km von den Kernreaktoren entfernt ist, wurde nun mit Messflüssigkeit gefüllt und beginnt mit der Datennahme. Die Wissenschaftler vergleichen die gemessene Zahl von Neutrinos mit dem erwarteten Neutrinofluss von den Reaktoren, was den Wert von theta13 schon 2011 deutlich verbessern wird. 2012 soll auch der zweite Detektor, der nur 400 m von den Reaktoren entfernt ist, in Betrieb gehen. Bis dorthin haben die Neutrinos noch kaum Gelegenheit, sich in eine andere Sorte umzuwandeln. Ein direkter Vergleich der Daten beider Detektoren ermöglicht dann eine wesentlich genauere Bestimmung von theta13.

Beide Detektoren benutzen speziell für das Experiment entwickelte organische Flüssigkeiten („Szintillatoren“) als Nachweismedium. Der Szintillator im 10 m3 großen Zentrum des Detektors enthält Gadolinium um die in der Wechselwirkung der Antineutrinos aus den Reaktoren mit Protonen (Wasserstoffkernen) gebildeten Neutronen einzufangen. Dabei entstehen Lichtblitze, die etwas später auftreten als die Lichtblitze vom Zerstrahlen eines in derselben Reaktion entstandenen Positrons mit einem Elektron. Zur Abschirmung ist die Nachweisflüssigkeit von drei Schichten anderer Flüssigkeiten in Nylongefäßen umgeben. Die Lichtblitze werden von 390 empfindlichen Photovervielfachern in elektronische Signale umgewandelt. Das Datenaufnahmesystem wird die nächsten fünf Jahre Signale registrieren und zur Auswertung aufbereiten. So wird die Neutrinophysik, wie schon seit 50 Jahren, eines der fruchtbarsten Gebiete der Teilchenphysik bleiben.

Die Forscher am Max-Planck-Institut für Kernphysik haben mit der Entwicklung der gadoliniumhaltigen Szintillatorflüssigkeit entscheidend zu dem Experiment beigetragen. Sie mussten eine Gadoliniumverbindung finden, testen, herstellen und reinigen, die in der organischen Flüssigkeit löslich und mehrere Jahre stabil ist. In Zusammenarbeit mit japanischen Kollegen haben die MPIK-Forscher außerdem die Photovervielfacher in einem speziell dafür gebauten Teststand geprüft. Diese zentralen Beiträge werden auch für das Verständnis und die Auswertung der Daten eine ganz wesentliche Rolle spielen.

Die Double-Chooz-Kollaboration besteht aus Universitäten und Forschungseinrichtungen in Brasilien, Deutschland, England, Frankreich, Japan, Russland, Spanien und den USA. In Deutschland sind das Max-Planck-Institut für Kernphysik in Heidelberg und die Universitäten Tübingen, TU München, RWTH Aachen und Hamburg beteiligt.

Kontakt:

Prof. Dr. Manfred Lindner
Tel.: +49 6221 516800
E-Mail: manfred.lindner@mpi-hd.mpg.de
Dr. Christian Buck
Tel.: +49 6221 516829
E-Mail: christian.buck@mpi.hd.mpg.de

Dr. Bernold Feuerstein | Max-Planck-Institut
Weitere Informationen:
http://doublechooz.org
http://www.mpi-hd.mpg.de/lin/research_dc.en.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Harmonien in der Optoelektronik
21.07.2017 | Georg-August-Universität Göttingen

nachricht Von photonischen Nanoantennen zu besseren Spielekonsolen
20.07.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten