Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Doppler-Effekt: Ein Experiment beweist eine rund 50 Jahre alte Theorie

24.03.2016

Dem Experimentalphysiker Prof. Thomas Zentgraf und seinen beiden Kollegen von der Universität Birmingham, Dr. Guixin Li und Prof. Shuang Zhang, ist es erstmalig gelungen, den nichtlinearen Doppler-Effekt von Licht bei Drehbewegungen im Experiment nachzuweisen – nahezu 50 Jahre nach seiner theoretischen Vorhersage durch den niederländischen Nobelpreisträger Nicolaas Bloembergen.

Den akustischen Doppler-Effekt erlebt man täglich in der Realität: Das Martinshorn eines Krankenwagens klingt schriller bzw. heller, wenn sich einem das Rettungsfahrzeug nähert. Entfernt es sich wieder, klingt das Martinshorn tiefer und dunkler. Das liegt daran, dass sich die Wellenlänge der Schallwellen verändert, sie wird bei der Bewegung der Schallquelle gestaucht oder gestreckt und es verändert sich damit ihre Tonhöhe.


Schematische Darstellung der Wellenlängenverschiebung von Licht (Photonen) beim Durchgang durch eine sich drehende Platte. Die Verschiebung wird durch zwei unterschiedliche P

Universität Paderborn, Department Physik

Dieser Effekt gilt nicht nur für Schallwellen, sondern für alle Arten von Wellen, also auch für Lichtwellen. Entfernt sich ein Stern von der Erde, wird die Lichtwelle quasi auseinandergezogen und verlängert sich, dieses langwelligere Licht nimmt das Auge als rotverschoben wahr. Bei der Annäherung des Sterns wird die Lichtwelle gestaucht, was eine Verschiebung der Wellenlänge ins blaue Spektrum bewirkt. Bereits 1842 hatte der österreichische Physiker Christian Andreas Doppler diesen optischen Effekt in seiner Abhandlung „Über das farbige Licht der Doppelsterne und einiger anderer Gestirne des Himmels“ vorhergesagt und der königlich-böhmischen Gesellschaft der Wissenschaften in Prag vorgelegt.

Erst drei Jahre später überprüfte der holländische Physiker Christoph H.D. Buys-Ballot den akustischen Doppler-Effekt in einem aufsehenerregenden Experiment. Er nutzte das zu dieser Zeit schnellste Fortbewegungsmittel: Auf einem fahrenden Eisenbahnwaggon stand ein Trompeter, an der Bahnstrecke lauschten Musiker den gespielten Tönen und konnten die Verschiebung der Tonhöhe äquivalent zu den Voraussagen Dopplers zur Farbe des Lichts erkennen.

Der Doppler-Effekt hat eine ganze Reihe technischer Errungenschaften erst möglich gemacht und wird heutzutage in Bereichen wie z.B. der Geschwindigkeitsmessung bei Radarfallen, dem GPS oder der Messung der Blutflussgeschwindigkeit im menschlichen Körper mittels Ultraschall eingesetzt. Außerdem hat der Doppler-Effekt eine Schlüsselfunktion bei einigen wichtigen Quantenphänomen wie der Linienverbreiterung von Spektrallinien und dem Einfangen und Kühlen von Atomen mit Laserlicht.

Neben dem bekannten Doppler-Effekt für geradlinige Bewegungen existiert ein Rotations-Doppler-Effekt für Drehbewegungen von Objekten. Dieser Effekt führt zu einer Verschiebung der Wellenlänge in Abhängigkeit der Drehgeschwindigkeit und wird bei der Messung von Rotationsfrequenzen von Luftturbulenzen, Molekülen und astronomischen Objekten eingesetzt.

Bereits im Jahr 1968, wenige Jahre nach der Erfindung des Lasers, wurde vom späteren Nobelpreisträger Nicolaas Bloembergen eine weitere Verschiebung der Wellenlänge bei rotierenden Objekten bei den sehr hohen Intensitäten von Laserlicht vorhergesagt. Fast 50 Jahre später konnte dieser Effekt nun erstmals im Labor nachgewiesen werden. „Aufgrund der geringen Verschiebung der Wellenlänge bei diesem nichtlinearen Effekt ist es extrem schwierig, die geringe Wellenlängenänderung direkt im Experiment zu beobachten“ erklärt Prof. Thomas Zentgraf.

Der Grund hierfür ist die geringe Rotationsgeschwindigkeit von Objekten im Vergleich zur Lichtgeschwindigkeit. Dies führt dazu, dass die Wellenlängenverschiebung von Licht beim Durchgang durch ein rotierendes Objekt gerade einmal im Bereich von wenigen Billionstel (1 Billionstel = 0,000.000.000.001) verschiebt. Selbst im Labor kann eine so kleine Wellenlängenverschiebung nicht direkt gemessen werden. „Wir haben hierzu eine spezielle Überlagerung zwischen zwei Lichtwellen, eine sogenannte Interferenz, ausgenutzt“ erläutert Prof. Zentgraf. Die zeitliche Änderung dieser Überlagerung wurde dann detektiert und daraus die Wellenlängenverschiebung bestimmt.

Die Überprüfung von fundamentalen Effekten der Physik, wie dem nichtlinearen Rotations-Doppler-Effekt, stellt einen wichtigen Schritt bei der Überprüfung gängiger Theorien für unser Weltbild dar. Mit den Experimenten an der Universität Paderborn und der Universität Birmingham konnte nun eine weitere Vorhersage bestätigt werden. In Zukunft könnte der Effekt bei der Untersuchung von Turbulenzen in Laserplasmen und der Bestimmung der Rotationsgeschwindigkeit von Molekülen Einzug finden.

Die Originalpublikation ist im Fachjournal Nature Physics erschienen und kann unter folgendem Link angesehen werden:

http://dx.doi.org/10.1038/nphys3699

Prof. Dr. Thomas Zentgraf leitet am Department Physik der Universität Paderborn die Arbeitsgruppe „Ultraschnelle Nanophotonik“ und ist Mitglied der Zentralen Wissenschaftlichen Einrichtung „Center of Optoelectronics and Photonics Paderborn (CeOPP)“. Seine Arbeitsgruppe beschäftigt sich mit der Entwicklung von künstlichen optischen Materialien sowie neuen Konzepten zur Beeinflussung der Lichtausbreitung. Seit 2014 ist er am neueingerichteten Sonderforschungsbereich „Maßgeschneiderte Nichtlineare Photonik“ (SFB/TRR142) beteiligt, wo er sich mit den nichtlinear-optischen Eigenschaften von nanostrukturierten Materialien beschäftigt.

Weitere Informationen:

http://dx.doi.org/10.1038/nphys3699
http://www.uni-paderborn.de

Tibor Werner Szolnoki | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Bilder magnetischer Strukturen auf der Nano-Skala
20.04.2018 | Georg-August-Universität Göttingen

nachricht Licht macht Ionen Beine
20.04.2018 | Max-Planck-Institut für Festkörperforschung, Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics