Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Doppler-Effekt: Ein Experiment beweist eine rund 50 Jahre alte Theorie

24.03.2016

Dem Experimentalphysiker Prof. Thomas Zentgraf und seinen beiden Kollegen von der Universität Birmingham, Dr. Guixin Li und Prof. Shuang Zhang, ist es erstmalig gelungen, den nichtlinearen Doppler-Effekt von Licht bei Drehbewegungen im Experiment nachzuweisen – nahezu 50 Jahre nach seiner theoretischen Vorhersage durch den niederländischen Nobelpreisträger Nicolaas Bloembergen.

Den akustischen Doppler-Effekt erlebt man täglich in der Realität: Das Martinshorn eines Krankenwagens klingt schriller bzw. heller, wenn sich einem das Rettungsfahrzeug nähert. Entfernt es sich wieder, klingt das Martinshorn tiefer und dunkler. Das liegt daran, dass sich die Wellenlänge der Schallwellen verändert, sie wird bei der Bewegung der Schallquelle gestaucht oder gestreckt und es verändert sich damit ihre Tonhöhe.


Schematische Darstellung der Wellenlängenverschiebung von Licht (Photonen) beim Durchgang durch eine sich drehende Platte. Die Verschiebung wird durch zwei unterschiedliche P

Universität Paderborn, Department Physik

Dieser Effekt gilt nicht nur für Schallwellen, sondern für alle Arten von Wellen, also auch für Lichtwellen. Entfernt sich ein Stern von der Erde, wird die Lichtwelle quasi auseinandergezogen und verlängert sich, dieses langwelligere Licht nimmt das Auge als rotverschoben wahr. Bei der Annäherung des Sterns wird die Lichtwelle gestaucht, was eine Verschiebung der Wellenlänge ins blaue Spektrum bewirkt. Bereits 1842 hatte der österreichische Physiker Christian Andreas Doppler diesen optischen Effekt in seiner Abhandlung „Über das farbige Licht der Doppelsterne und einiger anderer Gestirne des Himmels“ vorhergesagt und der königlich-böhmischen Gesellschaft der Wissenschaften in Prag vorgelegt.

Erst drei Jahre später überprüfte der holländische Physiker Christoph H.D. Buys-Ballot den akustischen Doppler-Effekt in einem aufsehenerregenden Experiment. Er nutzte das zu dieser Zeit schnellste Fortbewegungsmittel: Auf einem fahrenden Eisenbahnwaggon stand ein Trompeter, an der Bahnstrecke lauschten Musiker den gespielten Tönen und konnten die Verschiebung der Tonhöhe äquivalent zu den Voraussagen Dopplers zur Farbe des Lichts erkennen.

Der Doppler-Effekt hat eine ganze Reihe technischer Errungenschaften erst möglich gemacht und wird heutzutage in Bereichen wie z.B. der Geschwindigkeitsmessung bei Radarfallen, dem GPS oder der Messung der Blutflussgeschwindigkeit im menschlichen Körper mittels Ultraschall eingesetzt. Außerdem hat der Doppler-Effekt eine Schlüsselfunktion bei einigen wichtigen Quantenphänomen wie der Linienverbreiterung von Spektrallinien und dem Einfangen und Kühlen von Atomen mit Laserlicht.

Neben dem bekannten Doppler-Effekt für geradlinige Bewegungen existiert ein Rotations-Doppler-Effekt für Drehbewegungen von Objekten. Dieser Effekt führt zu einer Verschiebung der Wellenlänge in Abhängigkeit der Drehgeschwindigkeit und wird bei der Messung von Rotationsfrequenzen von Luftturbulenzen, Molekülen und astronomischen Objekten eingesetzt.

Bereits im Jahr 1968, wenige Jahre nach der Erfindung des Lasers, wurde vom späteren Nobelpreisträger Nicolaas Bloembergen eine weitere Verschiebung der Wellenlänge bei rotierenden Objekten bei den sehr hohen Intensitäten von Laserlicht vorhergesagt. Fast 50 Jahre später konnte dieser Effekt nun erstmals im Labor nachgewiesen werden. „Aufgrund der geringen Verschiebung der Wellenlänge bei diesem nichtlinearen Effekt ist es extrem schwierig, die geringe Wellenlängenänderung direkt im Experiment zu beobachten“ erklärt Prof. Thomas Zentgraf.

Der Grund hierfür ist die geringe Rotationsgeschwindigkeit von Objekten im Vergleich zur Lichtgeschwindigkeit. Dies führt dazu, dass die Wellenlängenverschiebung von Licht beim Durchgang durch ein rotierendes Objekt gerade einmal im Bereich von wenigen Billionstel (1 Billionstel = 0,000.000.000.001) verschiebt. Selbst im Labor kann eine so kleine Wellenlängenverschiebung nicht direkt gemessen werden. „Wir haben hierzu eine spezielle Überlagerung zwischen zwei Lichtwellen, eine sogenannte Interferenz, ausgenutzt“ erläutert Prof. Zentgraf. Die zeitliche Änderung dieser Überlagerung wurde dann detektiert und daraus die Wellenlängenverschiebung bestimmt.

Die Überprüfung von fundamentalen Effekten der Physik, wie dem nichtlinearen Rotations-Doppler-Effekt, stellt einen wichtigen Schritt bei der Überprüfung gängiger Theorien für unser Weltbild dar. Mit den Experimenten an der Universität Paderborn und der Universität Birmingham konnte nun eine weitere Vorhersage bestätigt werden. In Zukunft könnte der Effekt bei der Untersuchung von Turbulenzen in Laserplasmen und der Bestimmung der Rotationsgeschwindigkeit von Molekülen Einzug finden.

Die Originalpublikation ist im Fachjournal Nature Physics erschienen und kann unter folgendem Link angesehen werden:

http://dx.doi.org/10.1038/nphys3699

Prof. Dr. Thomas Zentgraf leitet am Department Physik der Universität Paderborn die Arbeitsgruppe „Ultraschnelle Nanophotonik“ und ist Mitglied der Zentralen Wissenschaftlichen Einrichtung „Center of Optoelectronics and Photonics Paderborn (CeOPP)“. Seine Arbeitsgruppe beschäftigt sich mit der Entwicklung von künstlichen optischen Materialien sowie neuen Konzepten zur Beeinflussung der Lichtausbreitung. Seit 2014 ist er am neueingerichteten Sonderforschungsbereich „Maßgeschneiderte Nichtlineare Photonik“ (SFB/TRR142) beteiligt, wo er sich mit den nichtlinear-optischen Eigenschaften von nanostrukturierten Materialien beschäftigt.

Weitere Informationen:

http://dx.doi.org/10.1038/nphys3699
http://www.uni-paderborn.de

Tibor Werner Szolnoki | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt
22.05.2017 | Universität Basel

nachricht Neuer Ionisationsweg in molekularem Wasserstoff identifiziert
22.05.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: XENON1T: Das empfindlichste „Auge“ für Dunkle Materie

Gemeinsame Meldung des MPI für Kernphysik Heidelberg, der Albert-Ludwigs-Universität Freiburg, der Johannes Gutenberg-Universität Mainz und der Westfälischen Wilhelms-Universität Münster

„Das weltbeste Resultat zu Dunkler Materie – und wir stehen erst am Anfang!“ So freuen sich Wissenschaftler der XENON-Kollaboration über die ersten Ergebnisse...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

Branchentreff für IT-Entscheider - Rittal Praxistage IT in Stuttgart und München

22.05.2017 | Veranstaltungen

Flugzeugreifen – Ähnlich wie PKW-/LKW-Reifen oder ganz verschieden?

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Myrte schaltet „Anstandsdame“ in Krebszellen aus

22.05.2017 | Biowissenschaften Chemie

Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

22.05.2017 | Physik Astronomie

Wie sich das Wasser in der Umgebung von gelösten Molekülen verhält

22.05.2017 | Biowissenschaften Chemie