Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Domänenwände in Nanodrähten trickreich in Bewegung gesetzt

03.04.2014

Domänenwände lassen sich durch magnetische Feldpulse synchron verschieben – Wichtige Voraussetzung für die Entwicklung von Nano-Bauteilen für die Datenspeicherung und Sensortechnik

Bei der Erforschung von Prozessen zur Informationsverarbeitung in Nanomagneten ist Wissenschaftlern der Johannes Gutenberg-Universität Mainz (JGU) ein entscheidender Durchbruch gelungen. Mit Hilfe eines Tricks konnten sie die Domänenwände in einem ferromagnetischen Nanodraht synchron verschieben. Dazu wurde senkrecht zur Ebene der Domänenwände ein gepulstes Magnetfeld angelegt.


Demonstration der synchronen Verschiebung mehrerer Domänenwände über große Distanzen durch angepasste senkrechte Feldpulse

Quelle: Kläui-Lab, Institut für Physik, Johannes Gutenberg-Universität Mainz

„Das ist eine radikal neue Lösung“, teilte Univ.-Prof. Dr. Mathias Kläui vom Institut für Physik der JGU mit. „Die Domänenwände lassen sich dadurch über eine relativ große Distanz synchron bewegen, ohne dass sie in ihre Ausgangsposition zurückfallen“. Dies ist für die dauerhafte Datenspeicherung unerlässlich. Denn würden die Domänenwände in ihre ursprüngliche Position zurücklaufen, käme es zum Datenverlust.

Die Forschungen erfolgten in Kooperation mit den Arbeitsgruppen von Prof. Dr. Stefan Eisebitt an der TU Berlin und von Prof. Dr. Gisela Schütz vom Max-Planck-Institut für Intelligente Systeme in Stuttgart. Sie wurden Ende März von Nature Communications publiziert.

Magnetische Nanodrähte weisen kleine Regionen mit einheitlicher Magnetisierung auf, sogenannte Domänen, die als Speichereinheiten (Bits) genutzt werden. Treffen Domänen mit unterschiedlicher Ausrichtung aufeinander, wird dieser Bereich als Domänenwand bezeichnet. Informationen können in den Domänen gespeichert und durch die Bewegung der Domänenwände gelesen und verarbeitet werden.

Die Methode hat den großen Vorteil, dass die Informationen – wie bei der magnetischen Datenspeicherung generell – nicht verloren gehen können, ganz im Gegensatz zu halbleiterbasierten Speichern wie z.B. Arbeitsspeicher im Computer, die Informationen ohne Strom schnell vergessen. Außerdem werden keine anfälligen beweglichen Komponenten, wie es beispielsweise der Lesekopf einer Festplatte ist, benötigt.

Bislang war es jedoch nicht gelungen, die erforderliche kontrollierte und synchrone Bewegung von mehreren Domänenwänden mit magnetischen Feldern zu erreichen. Der nächstliegende Lösungsansatz wäre ein magnetisches Feld in die Richtung anzulegen, in der die Magnetisierung in dem Nanodrähtchen verläuft. In der Praxis ist dies jedoch nicht geeignet, da es zu Datenverlust kommt.

Die Arbeitsgruppe um Mathias Kläui hat einen radikal neuen Ansatz verfolgt und war damit erfolgreich: Das magnetische Feld wird senkrecht zu den in einer Ebene magnetisierten Domänenwänden angelegt und es wird außerdem gepulst. Wie die Mainzer Wissenschaftler in ihrem Modellsystem festgestellt haben, führen asymmetrische Feldpulse dazu, dass die vorwärts- und rückwärtsgerichteten Kräfte, die auf die Domänenwände einwirken, maßgeschneidert werden können und somit können die Daten kontrolliert im Speicher verschoben werden.

Die beteiligten Physiker der Uni Mainz haben ihre Idee zunächst anhand von mikromagnetischen Simulationen untersucht und schließlich auch experimentell getestet. Hierzu haben sie die magnetische Anordnung in den Nanodrähtchen am Elektronenspeicherring BESSY II des Helmholtz-Zentrums Berlin für Materialien und Energie (HZB) im Bild festgehalten.

Wie aufgrund der Simulation erwartet, konnte eine Verschiebung der Domänenwände beobachtet werden, wobei die Richtung der Verschiebung mit dem Modell übereinstimmte. Die Wissenschaftler haben außerdem die Energie berechnet, die für die experimentell beobachtete Domänenwand-Bewegung notwendig wäre, und sind zu dem Schluss gekommen, dass der Energieverbrauch des vorgeschlagenen Systems mit den besten derzeit verfügbaren Bauteilen durchaus wettbewerbsfähig wäre.

„Die Ergebnisse stimmen uns sehr optimistisch. Wir gehen davon aus, dass mit dem neuen Ansatz ein notwendiger Paradigmenwechsel ermöglicht wird, um eine effiziente und kontrollierte synchrone Bewegung der Domänenwände in Nanodrähten zu erreichen“, erwartet Mathias Kläui. Damit wäre der Weg frei für die Entwicklung von nicht-flüchtigen Spintronik-Bauteilen der nächsten Generation, die in einem breiten Spektrum von Datenspeichern, Logik- und Sensorbausteinen zur Anwendung kommen könnten. 

Veröffentlichung:
June-Seo Kim et al.
Synchronous precessional motion of multiple domain walls in a ferromagnetic nanowire by perpendicular field pulses
Nature Communications, 24. März 2014
DOI: 10.1038/ncomms4429

Weitere Informationen:
Prof. Dr. Mathias Kläui
Kläui-Lab
Theorie der kondensierten Materie
Institut für Physik
Johannes Gutenberg-Universität Mainz (JGU)
D 55099 Mainz
Tel. +49 6131 39-23633
E-Mail: klaeui@uni-mainz.de
http://www.klaeui-lab.physik.uni-mainz.de/

Weitere Links:
http://www.nature.com/ncomms/2014/140324/ncomms4429/full/ncomms4429.html

Petra Giegerich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Schreiben mit dem Elektronenstrahl: Jetzt auch Nanostrukturen aus Silber
24.07.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Quantenkommunikation in freier Luft nimmt Fahrt auf
24.07.2017 | Österreichische Akademie der Wissenschaften

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

Recherche-Reise zum European XFEL und DESY nach Hamburg

24.07.2017 | Veranstaltungen

Internationale Konferenz zu Sprachdialogsystemen und Mensch-Maschine-Kommunikation in Saarbrücken

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungsnachrichten

Lupinen beim Trinken zugeschaut – erstmals 3D-Aufnahmen vom Wassertransport zu Wurzeln

24.07.2017 | Biowissenschaften Chemie

Schreiben mit dem Elektronenstrahl: Jetzt auch Nanostrukturen aus Silber

24.07.2017 | Physik Astronomie