Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die turbulente Atmosphäre der Venus

25.07.2017

Internationales Forschungsteam gewinnt neue Erkenntnisse über den „Zwillingsplaneten“ der Erde

Ein Forschungsbericht, der heute in der Fachzeitschrift Nature Astronomy veröffentlicht wurde, wirft Licht auf die bisher unerforschte nächtliche Zirkulation in den höheren Wolkenschichten der Venus.


Die atmosphäreische Superrotation in den oberen Wollken der Venus. Die Superrotation findet sowohl auf der Tages- als auch auf der Nachtseite der Venus statt. Auf der Tagesseite ist sie aber gleichförmiger (AKATSUKI-UVI Bild bei 360 nm, rechte Seite), während sie auf der Nachtseite unregulärer und weniger vorhersagbar erscheint (Komposition von Venus Express/VIRTIS-Bildern bei 3.8 µm, links). Bilder: JAXA, ESA, J. Peralta (JAXA) und R. Hueso (UPV/EHU).


Bespiele neuer Arten von Wolkenformen, die mithilfe von Venus Express (ESA) und dem Infrarot-Teleskop IRTF (NASA) auf der Nachtseite der Venus entdeckt wurden: Unbewegliche Wellen (Venus Express, linke obere Ecke), "Netz"-Muster (IRTF, oben rechts), rätselhafte Fäden (Venus Express, unten links) und dynamische Instabilitäten (Venus Express, unten rechts). Bilder: ESA, NASA, J. Peralta (JAXA) und R. Hueso (UPV/EHU)

Forscherinnen und Forscher des Rheinischen Instituts für Umweltforschung der Universität zu Köln sind Teil des internationalen Forschungsprojekts, das diese ersten umfassenden Messungen vorstellt. Sie entdeckten unerwartete Muster langsamer atmosphärischer Bewegung und stationäre Schwerewellen im nächtlichen Wolkenhimmel.

Venus wird oft als der Zwillingsplanet der Erde bezeichnet, da beide über eine ähnliche Größe, Oberflächenbeschaffenheit und ein komplexes Wettersystem verfügen. Mehr haben die beiden Planeten aber nicht gemeinsam: Die Venus ist einer der lebensfeindlichsten Orte in unserem Sonnensystem.

Dies liegt vor allem an ihrer Atmosphäre, die zu 96,5 Prozent aus Kohlendioxid besteht, und der Oberflächentemperatur von konstant ca. 500 Grad Celsius. Die Venus benötigt ungefähr 243 Erdtage, um sich einmal um sich selbst zu drehen. Ihre Atmosphäre sollte sich im gleichen Rhythmus drehen, aber sie rotiert in nur vier Erdtagen um die Venus.

Dieses Phänomen wird als Superrotation bezeichnet und sorgt für erhebliche Turbulenzen in der Atmosphäre des Planeten. Ursache und Antrieb der Superrotation sind noch weitgehend unbekannt, doch das Forschungsprojekt sucht nach Antworten. Atmosphärische Wellen, die durch Temperaturschwankungen beobachtet werden, scheinen eine wichtige Rolle zu spielen.

Die Messungsergebnisse wurden von einer internationalen Kollaboration unter der Leitung des Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA) erarbeitet. Spezialisten aus den Fachgebieten Astrophysik und Weltraum- und Planetenforschung von Universitäten und Instituten aus Japan, Spanien, Italien und Deutschland arbeiten in dem Projekt zusammen. Aus Deutschland sind das Rheinische Institut für Umweltforschung der Universität zu Köln und das Zentrum für Astronomie und Astrophysik der Technischen Universität Berlin an der Kollaboration beteiligt.

Das Forschungsteam hat Daten ausgewertet, die von der Raumsonde Venus Express generiert wurden. Diese Daten geben Aufschluss über die komplexe Atmosphäre der Venus. Temperaturstrukturen wurden im Hinblick auf horizontale und vertikale atmosphärische Wellen untersucht. Die Daten beruhen auf individuellen Kenndaten aus Infrarotstrahlungsmessungen bei 3,8 und 5,0 µm (Mikrometer), die in den Jahren 2006–2008 und 2015 gewonnen wurden.

Informationen über vertikale Atmosphärenwellen tragen im Zusammenspiel mit Informationen über horizontale Wellen entscheidend dazu bei, wertvolle Hinweise hinsichtlich der Natur der beobachteten Wellen zu bekommen. Die vertikale Information von VeRa (ein wissenschaftliches Atmosphärenexperiment, das Radiowellen auswertet, die von der Raumsonde Venus Express gesendet werden) wurde benötigt, um die beobachteten Wellen als Schwerewellen zu identifizieren.

So wird es möglich, die zugrundeliegenden atmosphärischen Prozesse zu verstehen. Dr. Silvia Tellmann ist Vize-Direktorin der Abteilung Planetenforschung am Rheinischen Institut für Umweltforschung an der Universität zu Köln und Expertin für die Struktur, Dynamik und Zirkulation planetarer Atmosphären. Sie erklärt: „Die so gefundenen stationären Schwerewellen treten vermehrt über erhöhtem Gelände auf, was nahelegt, dass diese Wellen durch die Strömung des Windes über topographische Hindernisse entstanden sind. Wir vermuten, dass sie einen wichtigen Beitrag zur Aufrechterhaltung der Superrotation der Venusatmosphäre liefern.“

Inhaltlicher Kontakt:
Dr. Silvia Tellmann
Rheinisches Institut für Umweltforschung, Universität zu Köln
+49 221 277 8181 3
silvia.tellmann@uni-koeln.de
Presse und Kommunikation:
Jürgen Rees
+49 221 470-3107
j.rees@uni-koeln.de

Gabriele Rutzen | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-koeln.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas
19.09.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern
15.09.2017 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie