Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Spitzen-Leistung der Elektronen

15.11.2016

Scharfe Metallspitzen verwendet man, um Elektronen gezielt in eine Richtung zu senden. Ein Quanten-Effekt liefert nun eine neue Methode, die Elektronen-Emission extrem genau zu kontrollieren.

Wenn man Elektronen präzise kontrollieren will, dann lässt man sie aus feinen Metallspitzen austreten – so macht man das etwa in einem Elektronenmikroskop. Seit Kurzem werden solche Metallspitzen auch als hochpräzise Elektronenquellen zur Erzeugung von Röntgenstrahlung verwendet.


Laserpulse werden auf eine Metallspitze geschossen und lösen Elektronen heraus.

FAU Erlangen-Nürnberg

Ein Team der TU Wien entwickelte nun gemeinsam mit einer Forschungsgruppe aus Deutschland (FAU Erlangen-Nürnberg) eine Methode, diese Elektronenemission mit Hilfe zweier Laserpulse viel genauer zu steuern als bisher. Damit wird es jetzt möglich, den Fluss der Elektronen auf extrem kurzen Zeitskalen ein- und auszuschalten.

Nur die Spitze zählt

„Die Grundidee ist ähnlich wie beim Blitzableiter“, erklärt Prof. Christoph Lemell vom Institut für Theoretische Physik der TU Wien. „Das elektrische Feld rund um eine Nadel ist immer genau an der Spitze am größten. Daher schlägt der Blitz in die Spitze des Blitzableiters ein, und aus demselben Grund verlassen Elektronen die Nadel genau an der Spitze.“

Mit modernen Methoden der Nanotechnologie kann man heute extrem feine Nadeln herstellen, ihre Spitze hat eine Ausdehnung von wenigen Nanometern. Man weiß also sehr genau, an welcher Stelle die Elektronen das Metall verlassen. Wichtig ist es zusätzlich nun aber auch, eine genaue Kontrolle darüber zu haben, ob und zu welchem Zeitpunkt die einzelnen Elektronen aus der Metallspitze austreten.

Genau das wird nun mit einer neuen Technik möglich: „Man beschießt die Metallspitze mit zwei verschiedenen Laserpulsen“, erklärt Florian Libisch (TU Wien). Die Farben dieser Laser wählt man so, dass die Lichtteilchen des einen Lasers genau doppelt so viel Energie haben wie die Lichtteilchen des anderen Lasers. Wichtig ist außerdem, dass die Lichtwellen der beiden Laser perfekt im gleichen Takt schwingen.

Das Team von der TU Wien konnte aufgrund von Computersimulationen vorhersagen, dass sich die zeitliche Verzögerung eines der beiden Pulse als „Schalter“ für die Elektronenemission verwenden lässt. Diese Vorhersage wurde nun von der Forschungsgruppe von Prof. Peter Hommelhoff von der FAU Erlangen-Nürnberg experimentell bestätigt. Aufgrund dieser Ergebnisse konnte auch der detaillierte Prozessablauf erklärt werden.

Elektronen, die Lichtteilchen absorbieren

Schießt man Laserpulse auf die Metallspitze kann das elektrische Feld des Lasers Elektronen aus dem Metall reißen – das war bereits bekannt. Neu ist allerdings, dass es durch die Kombination von zwei verschiedenen Lasern eine Möglichkeit gibt, die Emission der Elektronen auf wenige Femtosekunden genau zu kontrollieren.

Es gibt verschiedene Möglichkeiten, wie ein Elektron ausreichend viel Energie bekommen kann, um die Nadelspitze zu verlassen: Beispielsweise kann das Elektron entweder zwei Lichtteilchen des Lasers mit höherer Energie absorbieren oder aber vier Lichtteilchen des niederenergetischen Laserpulses. Beides führt zum selben Ergebnis.

„So wie ein Teilchen im Doppelspaltexperiment, das sich auf zwei Pfaden gleichzeitig bewegt, kann ein Elektron auch hier zwei verschiedene Wege gleichzeitig beschreiten“, erklärt Prof. Joachim Burgdörfer (TU Wien). „Die Natur legt sich nicht fest, welchen Weg das Elektron nimmt – beide Möglichkeiten finden gleichzeitig statt und überlagern einander.“

Durch präzise Kontrolle der beiden Laser kann man nun einstellen, ob sich diese beiden Quanten-Möglichkeiten gegenseitig verstärken – dann kommt es zu einer erhöhten Emission von Elektronen – oder ob sie einander stattdessen auslöschen sollen, sodass praktisch überhaupt keine Elektronen ausgesandt werden. So kann man einfach und effektiv die Elektronen-Emission kontrollieren.

Das ist nicht nur eine ganz neue Methode, mit der man nun wichtige Experimente mit energiereichen Elektronen durchführen kann, die neue Technik soll in Zukunft auch eine sehr präzise Steuerung von Röntgenstrahlen ermöglichen: „Es wird bereits an innovativen Röntgen-Quellen gearbeitet, die Arrays aus feinen Nano-Spitzen als Elektronenquelle verwenden“, erklärt Lemell. „Mit unserer neuen Methode könnte man diese Nano-Spitzen genau richtig ansteuern, um kohärente Röntgenstrahlung zu erzeugen.“

Originalpublikation: Phys. Rev. Lett. 117, 217601 DOI: 10.1103/PhysRevLett.117.217601

Rückfragehinweis:

Prof. Joachim Burgdörfer
Institut für Theoretische Physik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-13610
joachim.burgdoerfer@tuwien.ac.at

Dr. Florian Libisch
Institut für Theoretische Physik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-13608
florian.libisch@tuwien.ac.at

Weitere Informationen:

https://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2016/elektronenspitzen weitere Bilder
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.117.217601 Originalpublikation

Dr. Florian Aigner | Technische Universität Wien

Weitere Berichte zu: Elektron Elektronen Laser Laserpulse Lichtteilchen Metallspitze Röntgenstrahlung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau
17.11.2017 | Universität Ulm

nachricht Zwei verdächtigte Sterne unschuldig an mysteriösem Antiteilchen-Überschuss
17.11.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte