Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Spitzen-Leistung der Elektronen

15.11.2016

Scharfe Metallspitzen verwendet man, um Elektronen gezielt in eine Richtung zu senden. Ein Quanten-Effekt liefert nun eine neue Methode, die Elektronen-Emission extrem genau zu kontrollieren.

Wenn man Elektronen präzise kontrollieren will, dann lässt man sie aus feinen Metallspitzen austreten – so macht man das etwa in einem Elektronenmikroskop. Seit Kurzem werden solche Metallspitzen auch als hochpräzise Elektronenquellen zur Erzeugung von Röntgenstrahlung verwendet.


Laserpulse werden auf eine Metallspitze geschossen und lösen Elektronen heraus.

FAU Erlangen-Nürnberg

Ein Team der TU Wien entwickelte nun gemeinsam mit einer Forschungsgruppe aus Deutschland (FAU Erlangen-Nürnberg) eine Methode, diese Elektronenemission mit Hilfe zweier Laserpulse viel genauer zu steuern als bisher. Damit wird es jetzt möglich, den Fluss der Elektronen auf extrem kurzen Zeitskalen ein- und auszuschalten.

Nur die Spitze zählt

„Die Grundidee ist ähnlich wie beim Blitzableiter“, erklärt Prof. Christoph Lemell vom Institut für Theoretische Physik der TU Wien. „Das elektrische Feld rund um eine Nadel ist immer genau an der Spitze am größten. Daher schlägt der Blitz in die Spitze des Blitzableiters ein, und aus demselben Grund verlassen Elektronen die Nadel genau an der Spitze.“

Mit modernen Methoden der Nanotechnologie kann man heute extrem feine Nadeln herstellen, ihre Spitze hat eine Ausdehnung von wenigen Nanometern. Man weiß also sehr genau, an welcher Stelle die Elektronen das Metall verlassen. Wichtig ist es zusätzlich nun aber auch, eine genaue Kontrolle darüber zu haben, ob und zu welchem Zeitpunkt die einzelnen Elektronen aus der Metallspitze austreten.

Genau das wird nun mit einer neuen Technik möglich: „Man beschießt die Metallspitze mit zwei verschiedenen Laserpulsen“, erklärt Florian Libisch (TU Wien). Die Farben dieser Laser wählt man so, dass die Lichtteilchen des einen Lasers genau doppelt so viel Energie haben wie die Lichtteilchen des anderen Lasers. Wichtig ist außerdem, dass die Lichtwellen der beiden Laser perfekt im gleichen Takt schwingen.

Das Team von der TU Wien konnte aufgrund von Computersimulationen vorhersagen, dass sich die zeitliche Verzögerung eines der beiden Pulse als „Schalter“ für die Elektronenemission verwenden lässt. Diese Vorhersage wurde nun von der Forschungsgruppe von Prof. Peter Hommelhoff von der FAU Erlangen-Nürnberg experimentell bestätigt. Aufgrund dieser Ergebnisse konnte auch der detaillierte Prozessablauf erklärt werden.

Elektronen, die Lichtteilchen absorbieren

Schießt man Laserpulse auf die Metallspitze kann das elektrische Feld des Lasers Elektronen aus dem Metall reißen – das war bereits bekannt. Neu ist allerdings, dass es durch die Kombination von zwei verschiedenen Lasern eine Möglichkeit gibt, die Emission der Elektronen auf wenige Femtosekunden genau zu kontrollieren.

Es gibt verschiedene Möglichkeiten, wie ein Elektron ausreichend viel Energie bekommen kann, um die Nadelspitze zu verlassen: Beispielsweise kann das Elektron entweder zwei Lichtteilchen des Lasers mit höherer Energie absorbieren oder aber vier Lichtteilchen des niederenergetischen Laserpulses. Beides führt zum selben Ergebnis.

„So wie ein Teilchen im Doppelspaltexperiment, das sich auf zwei Pfaden gleichzeitig bewegt, kann ein Elektron auch hier zwei verschiedene Wege gleichzeitig beschreiten“, erklärt Prof. Joachim Burgdörfer (TU Wien). „Die Natur legt sich nicht fest, welchen Weg das Elektron nimmt – beide Möglichkeiten finden gleichzeitig statt und überlagern einander.“

Durch präzise Kontrolle der beiden Laser kann man nun einstellen, ob sich diese beiden Quanten-Möglichkeiten gegenseitig verstärken – dann kommt es zu einer erhöhten Emission von Elektronen – oder ob sie einander stattdessen auslöschen sollen, sodass praktisch überhaupt keine Elektronen ausgesandt werden. So kann man einfach und effektiv die Elektronen-Emission kontrollieren.

Das ist nicht nur eine ganz neue Methode, mit der man nun wichtige Experimente mit energiereichen Elektronen durchführen kann, die neue Technik soll in Zukunft auch eine sehr präzise Steuerung von Röntgenstrahlen ermöglichen: „Es wird bereits an innovativen Röntgen-Quellen gearbeitet, die Arrays aus feinen Nano-Spitzen als Elektronenquelle verwenden“, erklärt Lemell. „Mit unserer neuen Methode könnte man diese Nano-Spitzen genau richtig ansteuern, um kohärente Röntgenstrahlung zu erzeugen.“

Originalpublikation: Phys. Rev. Lett. 117, 217601 DOI: 10.1103/PhysRevLett.117.217601

Rückfragehinweis:

Prof. Joachim Burgdörfer
Institut für Theoretische Physik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-13610
joachim.burgdoerfer@tuwien.ac.at

Dr. Florian Libisch
Institut für Theoretische Physik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-13608
florian.libisch@tuwien.ac.at

Weitere Informationen:

https://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2016/elektronenspitzen weitere Bilder
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.117.217601 Originalpublikation

Dr. Florian Aigner | Technische Universität Wien

Weitere Berichte zu: Elektron Elektronen Laser Laserpulse Lichtteilchen Metallspitze Röntgenstrahlung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Reisetauglicher Laser
22.01.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Magnetische Kontrolle per Handzeichen: Team entwickelt elektronische „Haut“ für virtuelle Realität
22.01.2018 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungen

Transferkonferenz Digitalisierung und Innovation

22.01.2018 | Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungsnachrichten

Forschungsteam schafft neue Möglichkeiten für Medizin und Materialwissenschaft

22.01.2018 | Biowissenschaften Chemie

Ein Haus mit zwei Gesichtern

22.01.2018 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics