Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die schnellste lichtgetriebene Stromquelle der Welt

26.09.2017

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im Vergleich zu den schnellsten heutigen Transistoren beschleunigen.


Schematische Darstellung des Experiments zur ultraschnellen Stromerzeugung: Wenn die Lichtwelle (rot) auf das Graphen trifft (Wabengitter), wird instantan ein elektronischer Strom erzeugt.

FAU/Takuya Higuchi

Graphen macht´s möglich

In Gasen, isolierenden Materialien sowie Halbleitern war es Wissenschaftlern bereits gelungen, mithilfe von Lichtwellen Elektronen zu kontrollieren und so prinzipiell Ströme zu steuern. Mit Metallen funktionierte dies bisher jedoch nicht, da Metall normalerweise Lichtstrahlen reflektiert und so kein Licht eindringen kann, um die Elektronen im Inneren anzuregen.

Die Physiker der FAU in den Arbeitsgruppen von Prof. Dr. Peter Hommelhoff und Prof. Dr. Heiko Weber haben daher auf Graphen zurückgegriffen – ein Halbmetall, das aus nur einer einzelnen Lage Kohlenstoff besteht. Es ist so dünn, dass genug Licht einfällt, um die Elektronen in Bewegung zu versetzen.

Für ihr Experiment haben die Wissenschaftler extrem kurze Laserpulse in speziell definierten Wellenformen auf Graphen gefeuert. Treffen diese Lichtwellen auf die Elektronen im Graphen, werden diese durch das Material geschleudert, wie nach einem Peitschenhieb.

„Bei intensiven optischen Feldern wird innerhalb eines Bruchteils eines optischen Zyklus ein Strom erzeugt – das entspricht einer halben Femtosekunde. Überraschend war, dass trotz dieser enormen Kräfte die Quantenmechanik wieder einmal die entscheidende Rolle spielt“, erklärt Dr. Takuya Higuchi vom Lehrstuhl für Laserphysik, der Erstautor der Veröffentlichung.

Zwei Wege führen zum Ziel

Der Strom im Graphen basiert auf komplizierten quantenmechanischen Vorgängen, wie die Forscher herausfanden: Die Elektronen gelangen von ihrem Ausgangszustand zum angeregten Zustand nicht nur über einen Weg, sondern über zwei – analog zu zwei Straßen, die zum selben Ziel führen. Ähnlich einer Welle können sich die Elektronen an der Gabelung spalten und beide Straßen gleichzeitig entlangfließen.

Das Ergebnis: Je nachdem mit welcher relativen Phase die Elektronen am Ziel aufeinandertreffen, ist der Strom sehr groß, oder überhaupt nicht vorhanden. „Das ist vergleichbar einer Wasserwelle: Stellen Sie sich vor, eine Welle trifft auf eine Hauswand. Dann wird sie gespalten und fließt rechts und links am Gebäude vorbei. Am Ende des Gebäudes treffen beide Teile wieder aufeinander. Sind die Teilwellen dann beide auf ihrem Gipfel ergibt sich eine sehr große Welle, es fließt Strom.

Ist eine Teilwelle auf dem Höchststand, die andere an ihrem Tiefpunkt, gleichen sich die beiden aus, es gibt keine Welle – und keinen Strom“, erklärt Prof. Dr. Peter Hommelhoff vom Lehrstuhl für Laserphysik. „Wir können damit über die Lichtwellen regulieren, wie sich die Elektronen bewegen und wie viel Strom erzeugt wird.“

Gibt es zukünftig Elektronik mit Lichtfrequenz?

Die Ergebnisse sind ein weiterer wichtiger Schritt, um die beiden Zweige der modernen Technologie, Elektronik und Optik, auf eine Plattform zu bringen. Zukünftig lässt sich das Verfahren eventuell auf ultraschnelle Elektronik übertragen, die mit optischen Frequenzen kontrolliert werden kann.

Ihre Ergebnisse, die im Rahmen des Sonderforschungsbereich 953 „Synthetische Kohlenstoff-Allotrope“ erzielt wurden, haben die Wissenschaftler in der Zeitschrift Nature publiziert: doi:10.1038/nature23900 (ab 25.09.2017, 17 Uhr)

Weitere Informationen für die Medien:
Dr. Takuya Higuchi
Tel.: 09131 85-28335
takuya.higuchi@fau.de

Prof. Dr. Peter Hommelhoff
Tel.: 09131/85-27090
peter.hommelhoff@fau.de

Prof. Dr. Heiko Weber
Tel.: 09131 / 85-28421
heiko.weber@fau.de

Dr. Susanne Langer | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.fau.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MADMAX: Ein neues Experiment zur Erforschung der Dunklen Materie
20.10.2017 | Max-Planck-Institut für Physik

nachricht Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung
20.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher untersuchen Pflanzenkohle als Basis für umweltfreundlichen Langzeitdünger

20.10.2017 | Ökologie Umwelt- Naturschutz

„Antilopen-Parfüm“ hält Fliegen von Kühen fern

20.10.2017 | Agrar- Forstwissenschaften

Aus der Moosfabrik

20.10.2017 | Biowissenschaften Chemie