Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Nano-Welt als Zeitlupenfilm: Regensburger Forscher entwickeln neues Mikroskop

06.10.2014

Physiker der Universität Regensburg haben ein neuartiges Mikroskop entwickelt, das Zeitlupenfilme von winzigen Nanostrukturen mit bahnbrechender Zeitauflösung ermöglicht – schneller als eine einzige Lichtschwingung.

Die Forscher um Prof. Dr. Rupert Huber vom Institut für Experimentelle und Angewandte Physik haben auch die möglichen Anwendungsgebiete des Mikroskops vorgestellt. Wie man damit beispielsweise superschnelle Bewegungen von Elektronen direkt verfolgen kann, wurde jetzt in der renommierten Fachzeitschrift „Nature Photonics“ veröffentlicht (DOI: 10.1038/nphoton.2014.225).


Schematische Darstellung der Untersuchung von Elektronenbewegungen mit Hilfe des neuen Mikroskops.

Bildnachweis: Max Eisele – Zur ausschließlichen Verwendung im Rahmen der Berichterstattung zu dieser Pressemitteilung.

Die moderne Nanotechnologie macht sich heute das zunutze, was die Natur schon immer konnte: Durch gezielte Strukturierung auf der Längenskala von Nanometern – dem milliardsten Teil eines Meters – können künstliche Materialien mit neuen Eigenschaften entwickelt werden. Ein Beispiel sind Halbleiterbauelemente für die Hochgeschwindigkeitselektronik.

Um die Funktion solcher Strukturen zu verstehen und diese noch schneller, kleiner und effizienter zu machen, will man möglichst direkt verfolgen, wie sich Elektronen auf der Längenskala weniger Atomdurchmesser bewegen. Da solche Vorgänge sehr schnell ablaufen, wird in der Mikroskopie seit Jahren fieberhaft versucht, exzellente Ortsauflösung mit höchster Zeitauflösung zu verbinden.

Das Team um Prof. Huber hat nun ein Mikroskop vorgestellt, das genau dies leistet. Exzellente Ortsauflösung erreichen die Physiker, indem sie Licht auf eine winzige Metallspitze fokussieren. Diese sammelt das Licht und bündelt es an ihrem Ende auf einen Raumbereich von zehn Nanometern in allen drei Raumrichtungen – milliardenfach stärker als in einem normalen Lichtmikroskop.

Wird die Spitze nun über eine Probenoberfläche gerastert, so streut sie einfallendes Licht unterschiedlich, je nachdem, welche lokalen Eigenschaften die Probe direkt unterhalb der Spitze aufweist. Die Forscher beleuchteten die Metallspitze nun mit infraroten Lichtblitzen, die nur wenige Femtosekunden lang sind.

Eine Femtosekunde ist dabei die unvorstellbar kurze Zeitspanne eines Millionstel einer Milliardstel-Sekunde. Um das gestreute Licht mit höchster Zeitauflösung zu erfassen, benutzten die Physiker Sensoren, die so schnell sind, dass sie selbst infrarotes Licht beim Schwingen beobachten konnten.

Wie in einem Zeitlupenfilm können diese Blitze eine Folge von Schnappschüssen winziger und superschneller Elektronenbewegungen aufnehmen. In einem spektakulären ersten Demonstrationsexperiment drehten die Forscher einen 3D-Film von einer bislang nur indirekt zugänglichen Elektronenbewegung an der Oberfläche von Halbleiter-Nanodrähten.

Die am CNR - Istituto Nanoscienze in Pisa hergestellten Nanostrukturen sind besonders für die künftige Hochgeschwindigkeitselektronik interessant. Neben technologischen Fragestellungen in der Elektronik oder Photovoltaik dürfte das neue Mikroskop ein breites interdisziplinäres Anwendungsfeld finden, das von der Erforschung der physikalischen Eigenschaften in exotischen Materialien bis hin zu biologischen Vorgängen auf molekularer Ebene reicht.

Titel der Originalpublikation:
M. Eisele, T. L. Cocker, M. A. Huber, M. Plankl, L. Viti, D. Ercolani, L. Sorba, M. S. Vitiello and R. Huber, „Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution “, in Nature Photonics (2014)

Die Publikation im Internet unter:
http://www.nature.com/doifinder/10.1038/nphoton.2014.225

Ansprechpartner für Medienvertreter:
Prof. Dr. Rupert Huber
Universität Regensburg
Institut für Experimentelle und Angewandte Physik
Tel.: 0941 943-2070
Rupert.Huber@physik.uni-regensburg.de

Alexander Schlaak | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Scharfe Röntgenblitze aus dem Atomkern
17.08.2017 | Max-Planck-Institut für Kernphysik, Heidelberg

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie