Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die (mehr als) perfekte Welle

28.04.2015

Physiker aus Augsburg, Dresden, Linz und München berichten in "Nature Nanotechnology" über die gelungene Realisierung eines Synthesizers für maßgeschneiderte nanomechanische Wellen.

Forscher des Exzellenz-Clusters Nanosystems Initiative Munich (NIM), des Center for Nanoscience (CeNS) der LMU München und des Zentrums für innovative Technologien der Universität Augsburg (ACIT) berichten in “Nature Nanotechnology”, dass und wie es ihnen gemeinsam mit Kollegen des Institute for Integrative Nanoscience am Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (IFW) und der Johannes Kepler Universität (JKU) Linz gelungen ist, den ersten Synthesizer für maßgeschneiderte nanomechanische Wellen zu realisieren.


Synthesizer für nanomechanische Wellen: Um maßgeschneiderte Nano-Beben auf einem Chip anzuregen, werden einfache Sinus-Schwingungen so kombiniert, dass sie - wie hier - eine Dreieckswelle erzeugen.

© Christoph Hohmann/NIM

In ihrem soeben von “Nature Nanotechnology” publizierten Artikel zeigen der NIM-Absolvent Florian Schülein und sein Betreuer Prof. Dr. Hubert Krenner - beide forschen am Augsburger Lehrstuhl für Experimentalphysik I (Prof. Dr. Achim Wixforth) -, wie mehrere Nanoschallwellen unterschiedlichster Frequenzen auf einem Chip so miteinander überlagert werden können, dass sie zum Ergebnis einer extrem scharf definierten Nanoschallwelle führen, mit der Quanteneffekte in Halbleiteratomen sehr schnell definiert und gezielt kontrolliert werden können.

Bereits im frühen 19. Jahrhundert hat der französische Mathematiker und Physiker Jean Baptiste Joseph Fourier nachgewiesen, dass sich durch die gezielte Kombination eines Grundtones mit einer Reihe von Obertönen jede beliebige Schallwelle “komponieren” lässt. Dieses Grundprinzip wird heute in unzähligen Produkten des täglichen Lebens genutzt. So erzeugen z. B. Synthesizer – wie etwa die bekannte “Hammond-Orgel” – ihren Klang auf der Basis dieser Fourier-Reihe, bei der MP3-Entschlüsselung ist sie – umgekehrt angewandt – wiederum der Schlüssel zu optimaler Datenkompression.

In ihren Experimenten haben die Physiker am Augsburger Lehrstuhl Wixforth und ihre Münchner, Dresdener und Linzer Kollegen das Grundprinzip der Fourier-Synthese nun genutzt, um auf einem Chip nanomechanische Schallwellen höchster Präzision zu erzeugen. Ihr Ansatz basiert auf der Überlagerung akustischer Oberflächenwellen, sog. “Nano-Erdbeben”, einem Verfahren, für das Wixforth mit seinem Augsburger Lehrstuhl als international ausgewiesener Experte gilt.

“Um mit Blick auf das Design einer ‘perfekten Schallwelle’ das Nano-Beben auf unseren Chips zweckgerecht gestalten und kontrollieren zu können, mussten wir im Vorfeld ein neues Design der Elektroden entwickeln, die die Schallwellen erzeugen. Gelöst haben wir dieses Problem durch die Entwicklung neuer Elektroden-Geometrien”, berichtet Schülein. Diese speziellen Elektroden-Geometrien machen es möglich, über eine einfache Sinus-Welle hinaus zeitgleich eine große Zahl von Obertönen höchster Intensität zu erzeugen.

“Und diese neu entwickelten Geometrien”, so Krenner, “waren der Schlüssel, der es uns ermöglicht hat, die unterschiedlichen Frequenzen mit einer bislang so nicht möglichen Präzision miteinander zu überlagern. Wenn wir die unterschiedlichen Frequenzen auf unserem Chip entsprechend präzise dosiert miteinander kombinieren, können wir aus einer simplen Sinus-Welle eine Dreiecks- oder Rechteckswelle machen oder sogar eine kurze Stoßwelle.”

Um sicher zu gehen, dass sie ihr Ziel - die von ihnen erstrebte “perfekte Nanowelle” - auch wirklich erreicht hatten, bedienten sich die Forscher nanoskopischer “Drucksensoren” in Form von sog. Quantenpunkten. Es handelte sich dabei um ‘künstliche Atome’, konkret um nanoskopische Halbleiterstrukturen, die speziell für diesen Zweck am IFW Dresden hergestellt wurden. “Diese Quantenpunkte”, erläutert Wixforth, “sind Nano-Inseln, die Licht als einzelne Lichtquanten, Photonen und extrem scharfe Spektrallinien abgeben.

Die Wellenlänge dieses abgestrahlten Lichts hängt wiederum äußerst empfindlich von der Verformung des Materials ab. Genau diese optisch-mechanische Kopplung haben wir genutzt, um unsere nanomechanische Welle in ein optisches Signal zu übersetzen.” Und Schülein ergänzt: “Es war faszinierend und sehr befriedigend, an unserem extrem schnellen Stroboskop mitzuverfolgen, wie sich die Spektrallinien des Quantenpunkts exakt so bewegten, wie wir es für unsere perfekte Nanowelle berechnet hatten.”

Dem Augsburger Lehrstuhl für Experimentalphysik I wird aufgrund seiner dezidiert anwendungsrelevanten Grundlagenforschung zu akustischen Oberflächenwellen international eine Pionierrolle auf diesem Gebiet zuerkannt. Die von Achim Wixforth entwickelte und angewandte Methode des “Nano-Bebens auf dem Chip” führt aber immer wieder zu spektakulären Forschungsergebnissen auch in biophysikalischen Kontexten sowie in der Mikrofluidik, die sich mit dem Verhalten von Flüssigkeiten und Gasen auf kleinstem Raum auseinandersetzt, und nicht zuletzt dort, wo es um fundamentale physikalische Fragen wie etwa um den Quanten Hall Effekt geht.

So hat die Forschung aufgrund des nanomechanischen Durchbruchs beim Design einer nun „mehr als perfekten Welle“, über das die Augsburger Physiker jetzt in “Nature Nanotechnology” berichten, guten Grund zu der Annahme, dass es über kurz oder lang möglich sein wird, Quantensysteme durch Nano-Beben mit dem Epizentrum Augsburg quantenmechanisch zu kontrollieren.

Die Untersuchungen der Augsburger Physiker und ihrer Kollegen aus München, Dresden und Linz wurden gefördert von der Deutsche Forschungsgemeinschaft (DFG) über deren Emmy Noether Programm (KR 3790/2-1), vom Exzellenzcluster NIM, vom DFG-Sonderforschungsbereich 631, vom BMBF im Rahmen des Projekts “QuaHL-Rep” und von der Europäischen Union im Zuge des 7th Framework Programme-Projekts HANAS.

Publikation:

Florian J. R. Schülein, Eugenio Zallo, Paola Atkinson, Oliver G. Schmidt, Rinaldo Trotta, Armando Rastelli, Achim Wixforth, and Hubert J. Krenner: Fourier synthesis of radiofrequency nanomechanical pulses with different shapes, Nature Nanotechnology – advanced online publication; doi:10.1038/nnano.2015.72 (2015), http://dx.doi.org/10.1038/nnano.2015.72


Ansprechpartner:

Prof. Hubert Krenner – hubert.krenner@physik.uni-augsburg.de
Prof. Achim Wixforth – achim.wixforth@physik.uni-augsburg.de
Dr. Florian Schülein – florian.schuelein@physik.uni-augsburg.de

Lehrstuhl für Experimentalphysik I
Universität Augsburg
Universitätsstraße 1
86159 Augsburg
Telefon +49(0)821-598-3308
http://www.physik.uni-augsburg.de/lehrstuehle/exp1/

Weitere Informationen:

http://dx.doi.org/10.1038/nnano.2015.72

Klaus P. Prem | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

Jenaer Akustik-Tag: Belastende Geräusche minimieren - für den Schutz des Gehörs

27.04.2017 | Veranstaltungen

Ballungsräume Europas

26.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

VLC 200 GT von EMAG: Neue passgenaue Dreh-Schleif-Lösung für die Bearbeitung von Pkw-Getrieberädern

27.04.2017 | Maschinenbau

Induktive Lötprozesse von eldec: Schneller, präziser und sparsamer verlöten

27.04.2017 | Maschinenbau

Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

27.04.2017 | Informationstechnologie