Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Majorana-Natur des Neutrinos und der neutrinolose doppelte Beta-Zerfall

05.06.2014

Ein Experiment tief unter der Stadt Carlsbad in New Mexico (USA) hat nach einer Suche von zwei Jahren bisher keinen Hinweis auf einen speziellen radioaktiven Zerfall gefunden, der bei Physikern als Vorbote einer neuen Physik jenseits des Standardmodells gilt. Sollte es diesen Zerfall tatsächlich dennoch geben, so müsste dessen Halbwertszeit mehr als eine Million-Milliarden mal größer sein, als das Alter des Universums.

Neutrinos sind winzige, neutrale Elementarteilchen, die Masse besitzen, obwohl das nach dem Standardmodell der Physik zufolge nicht sein dürfte. Eine Erklärung für diese Masse könnte sein, dass Neutrinos ihre eigenen Antiteilchen, so genannte Majorana-Teilchen, sind.


Der EXO-200 Detektor

Foto: SLAC

Ein Beleg für diese Doppelnatur der Neutrinos fehlt zwar bislang, doch viele theoretische Erweiterungen des Standardmodells der Physik legen die Majorana-Natur der Neutrinos nahe. Sollte diese Hypothese zutreffen, so könnten viele bisher offene Fragen über die Entstehung unseres Universums und den Ursprung der Materie beantwortet werden.

650 Meter dicke Abschirmung

Im Experiment EXO-200 (Enriched Xenon Observatory), das im US-amerikanischen Bundesstaat New Mexico in 650 Metern unter der Erde betrieben wird, suchen Wissenschaftler daher seit Jahren nach einem Beweis. Physiker der Forschungsgruppe von Professor Peter Fierlinger am Exzellenzcluster Universe der Technischen Universität München sind maßgeblich an diesem Experiment beteiligt.

Die empfindlichste Methode, um die Majorana-Frage experimentell zu klären, ist die Suche nach einem Prozess, der „neutrinoloser doppelter Beta-Zerfall“ genannt wird. Dieser Prozess ist ein besonderer radioaktiver Zerfall ohne die Aussendung von Neutrinos und könnte sich nur ereignen, wenn Neutrinos ihre eigenen Antiteilchen wären.

Höchste Messgenauigkeit

Mit bisher nie dagewesener Messgenauigkeit hat EXO-200 einzelne solche Zerfälle über mehrere Jahre gesucht. Da während dieser Zeit kein einziger neutrinoloser doppelter Beta-Zerfall beobachtet wurde, muss die Halbwertszeit dieses Zerfalls mindestens 10^25 Jahren betragen, rund eine Million-Milliarden Jahre mal mehr als das Alter des Universums.

„Obwohl diese Messung beispiellos genau ist, kann die eigentliche Frage zur Natur des Neutrinos damit immer noch nicht beantwortet werden“, sagt Dr. Michael Marino von der Forschungsgruppe von Professor Peter Fierlinger, der in der EXO-200-Kollaboration für die Analyse der nun veröffentlichten Daten verantwortlich ist. „Deshalb bleibt diese ungeklärte Frage eine der spannendsten in der Physik“.

Mit diesem Ergebnis konnte die hohe Sensitivität des Detektors und auch das große Zukunftspotential der Methode demonstriert werden. EXO-200 ist damit auch Basis für ein sehr viel größeres zukünftiges Experiment, das die Majorana-Natur von Neutrinos endgültig bestätigen oder widerlegen könnte.

Internationale Zusammenarbeit

EXO-200 nutzt 200 Kilogramm flüssiges Xenon, das auf 80,6 Prozent mit dem Isotop Xenon-136 angereichert ist. In diesem Isotop wird der neutrinolose doppelte Betazerfall theoretisch erwartet. Betrieben wird das Experiment in der Waste Isolation Pilot Plant (WIPP) im US-amerikanischen Bundesstaat New Mexico in 650 Metern unter der Erde. Auf diese Weise wird der Versuchsaufbau vor radioaktivem Untergrund und kosmischen Strahlen geschützt.

EXO-200 ist eine Kollaboration von Forschungsgruppen aus Canada, der Schweiz, Südkorea, Russland und den USA sowie der Technischen Universität München als einzigem deutschen Partner.

Original publication:

The EXO-200 Collaboration: Search for Majorana neutrinos with the first two years of EXO-200 data
Nature, Adv. online publication, June 5, 2014

Kontakt:

Dr. Michael Marino
Excellence Cluster Universe
Technische Universität München
Boltzmannstr. 2, 85748 Garching, Germany
Tel. +49 89 35831 7149
E-Mail: michael.marino@mytum.de
http://www.universe-cluster.de/fierlinger/exo.html

Weitere Informationen:

http://www-project.slac.stanford.edu/exo/

Dr. Ulrich Marsch | Technische Universität München

Weitere Berichte zu: Antiteilchen Beta-Zerfall Daten EXO-200 Experiment Isotop Messgenauigkeit Nature Neutrinos Universe Xenon

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

nachricht Innovative High Power LED Light Engine für den UV Bereich
22.06.2017 | Omicron - Laserage Laserprodukte GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Im Focus: Forscher entschlüsseln erstmals intaktes Virus atomgenau mit Röntgenlaser

Bahnbrechende Untersuchungsmethode beschleunigt Proteinanalyse um ein Vielfaches

Ein internationales Forscherteam hat erstmals mit einem Röntgenlaser die atomgenaue Struktur eines intakten Viruspartikels entschlüsselt. Die verwendete...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

Forschung zu Stressbewältigung wird diskutiert

21.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Individualisierte Faserkomponenten für den Weltmarkt

22.06.2017 | Physik Astronomie

Evolutionsbiologie: Wie die Zellen zu ihren Kraftwerken kamen

22.06.2017 | Biowissenschaften Chemie

Spinflüssigkeiten – zurück zu den Anfängen

22.06.2017 | Physik Astronomie