Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die klassische Physik hat den Dreh heraus

11.03.2016

Einfache Spin-Modelle, die ursprünglich für die Erklärung des Magnetismus entwickelt wurden, können sämtliche Phänomene der klassischen Physik reproduzieren, so Wissenschaftler am MPQ und UCL.

Gemma De las Cuevas vom Max-Planck-Institut für Quantenoptik (MPQ) in Garching und Toby Cubitt vom University College London (UCL) haben erstmals gezeigt, dass solche einfachen universellen Modelle existieren. Ihre theoretischen Untersuchungen bauen auf Pionierarbeiten aus den 80er Jahren auf, die an der Schnittstelle von theoretischer Computerwissenschaft und theoretischer Physik erfolgten. Danach sind extrem einfache Computer universell: sie können im Prinzip alles berechnen, was überhaupt berechnet werden kann. Die neuen Resultate demonstrieren, dass etwas sehr analoges auch in der Physik auftritt (Science, 11. März 2016).


Universelle Modelle enthalten sämtliche Spin-Modelle, so wie weißes Licht alle Farben enthält.

Grafik: Christian Hackenberger

Spin-Systeme modellieren die Wechselwirkungen zwischen den Teilchen, aus denen ein Stoff besteht, in einer sehr vereinfachten Weise. In der einfachsten Variante kann jedes Teilchen bzw. jeder Spin nur in einem von zwei möglichen Zuständen sein, z.B. aufwärts oder abwärts gerichtet. Die Wechselwirkung zwischen benachbarten Teilchen führt dazu, dass sie sich entweder parallel oder entgegengesetzt ausrichten. Dieses Modell ist nach dem Physiker Ernst Ising benannt, der es 1924 in seiner Doktorarbeit untersuchte.

„Modelle in unterschiedlichen Dimensionen oder mit unterschiedlichen Symmetrien weisen ein sehr unterschiedliches physikalisches Verhalten auf. Unsere Untersuchungen zeigen, dass alle diese Unterschiede verschwinden, wenn man Modelle mit variablen Kopplungsstärken betrachtet, da sie alle äquivalent zu universellen Modellen sind“, sagt Dr. Gemma De las Cuevas, Wissenschaftlerin in der Abteilung Theorie von Prof. Ignacio Cirac am MPQ.

Frühere Arbeiten von De las Cuevas und anderen haben dieser Arbeit den Weg gewiesen. Sie zeigten, dass in Bezug auf thermodynamische Eigenschaften in komplizierteren Modellen etwas Ähnliches passiert. Diese neue Arbeit zeigt, dass das Ergebnis für die gesamte klassische Physik und für viel einfachere Modelle Gültigkeit hat. Indem die zu Grunde liegende Physik mit der Komplexitätstheorie verbunden wird – einem Zweig der theoretischen Computerwissenschaften – erklären die Ergebnisse auch, woher die Universalität kommt, und sie definieren genau, welche Modelle universell sind und welche nicht.

„Einen Computerwissenschaftler werden diese Ergebnisse vielleicht nicht überraschen, weil er mit der Vorstellung vertraut ist, dass universelle Computer prinzipiell alles simulieren können, sogar andere Computer“, meint Ko-Autor Dr. Toby Cubitt vom Fachbereich Computerwissenschaften des UCL. „Aber die Tatsache, dass ein ähnliches Phänomen auch in der Physik auftaucht, ist weit überraschender, und diese Erkenntnis hat bislang noch keinen Eingang in Anwendungen gefunden. In der wissenschaftlichen Gemeinschaft machen wir gerade die Erfahrung, dass Ideen aus der theoretischen Computerwissenschaft, untermauert von harten mathematischen Beweisen, unser Verständnis von der Physik vertiefen können. Es ist im Moment sehr spannend, an der Schnittstelle dieser beiden Gebiete zu arbeiten.”

Aber er betont: „Es handelt sich dabei keineswegs um das gut bekannte Phänomen der Universalität in der statistischen Physik. Universalität erklärt hier, warum sich verschiedene mikroskopische Modelle gleich benehmen. Unsere universellen Modelle sind gewissermaßen sogar das Gegenteil: Sie können ganz unterschiedliche Eigenschaften, sogar jede prinzipiell mögliche, annehmen.“ Und De las Cuevas ergänzt: „Spin-Modelle werden nicht nur in der Physik verwendet. Sie modellieren vielmehr viele andere komplexe Systeme, wie z.B. neuronale Netzwerke, Proteine oder soziale Netzwerke. All diese Systeme kann man vereinfacht mit Hilfe von Objekten (Neuronen, Aminosäuren oder Personen) beschreiben, die miteinander verbunden sind und sich gegenseitig beeinflussen.“ Die neuen Ergebnisse könnten es also ermöglichen, auch für diese Systeme ein tieferes Verständnis zu entwickeln.

Die Forscher beschäftigen sich nun mit der Frage, ob ihre theoretischen Ergebnisse in der Praxis angewandt werden können, um z.B. numerische Simulationen von Vielteilchensystemen zu verbessern, oder um neuartige komplexe Systeme zu konstruieren, von denen man bis jetzt gedacht hat, dass sie mit den zur Zeit zur Verfügung stehenden Techniken nicht herzustellen seien.

Die Arbeit wurden unterstützt vom EU-Projekt SIQS, der Royal Society (UK) sowie der John Templeton Foundation.

Originalveröffentlichung:
Gemma De las Cuevas and Toby S. Cubitt
Simple universal models capture all classical spin physics
Science, 11. März 2016

Kontakt:

Dr. Gemma de las Cuevas
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 - 343
E-Mail: gemma.delascuevas@mpq.mpg.de

Dr. Toby S. Cubitt
University College London
Dept. of Computer Science
66-72 Gower Street
London WC1E 6EA
United Kingdom
Telefon: +44 (0)20 3108 7158
E-Mail: T.Cubitt@cs.ucl.ac.uk

Dr. Olivia Meyer-Streng
Max-Planck-Institut für Quantenoptik
85748 Garching b. München
Telefon: +49 (0)89 32 905 - 213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Planeten außerhalb unseres Sonnensystems: Bayreuther Forscher dringen tief ins Weltall vor
23.02.2017 | Universität Bayreuth

nachricht Kühler Zwerg und die sieben Planeten
23.02.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie