Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die klassische Physik hat den Dreh heraus

11.03.2016

Einfache Spin-Modelle, die ursprünglich für die Erklärung des Magnetismus entwickelt wurden, können sämtliche Phänomene der klassischen Physik reproduzieren, so Wissenschaftler am MPQ und UCL.

Gemma De las Cuevas vom Max-Planck-Institut für Quantenoptik (MPQ) in Garching und Toby Cubitt vom University College London (UCL) haben erstmals gezeigt, dass solche einfachen universellen Modelle existieren. Ihre theoretischen Untersuchungen bauen auf Pionierarbeiten aus den 80er Jahren auf, die an der Schnittstelle von theoretischer Computerwissenschaft und theoretischer Physik erfolgten. Danach sind extrem einfache Computer universell: sie können im Prinzip alles berechnen, was überhaupt berechnet werden kann. Die neuen Resultate demonstrieren, dass etwas sehr analoges auch in der Physik auftritt (Science, 11. März 2016).


Universelle Modelle enthalten sämtliche Spin-Modelle, so wie weißes Licht alle Farben enthält.

Grafik: Christian Hackenberger

Spin-Systeme modellieren die Wechselwirkungen zwischen den Teilchen, aus denen ein Stoff besteht, in einer sehr vereinfachten Weise. In der einfachsten Variante kann jedes Teilchen bzw. jeder Spin nur in einem von zwei möglichen Zuständen sein, z.B. aufwärts oder abwärts gerichtet. Die Wechselwirkung zwischen benachbarten Teilchen führt dazu, dass sie sich entweder parallel oder entgegengesetzt ausrichten. Dieses Modell ist nach dem Physiker Ernst Ising benannt, der es 1924 in seiner Doktorarbeit untersuchte.

„Modelle in unterschiedlichen Dimensionen oder mit unterschiedlichen Symmetrien weisen ein sehr unterschiedliches physikalisches Verhalten auf. Unsere Untersuchungen zeigen, dass alle diese Unterschiede verschwinden, wenn man Modelle mit variablen Kopplungsstärken betrachtet, da sie alle äquivalent zu universellen Modellen sind“, sagt Dr. Gemma De las Cuevas, Wissenschaftlerin in der Abteilung Theorie von Prof. Ignacio Cirac am MPQ.

Frühere Arbeiten von De las Cuevas und anderen haben dieser Arbeit den Weg gewiesen. Sie zeigten, dass in Bezug auf thermodynamische Eigenschaften in komplizierteren Modellen etwas Ähnliches passiert. Diese neue Arbeit zeigt, dass das Ergebnis für die gesamte klassische Physik und für viel einfachere Modelle Gültigkeit hat. Indem die zu Grunde liegende Physik mit der Komplexitätstheorie verbunden wird – einem Zweig der theoretischen Computerwissenschaften – erklären die Ergebnisse auch, woher die Universalität kommt, und sie definieren genau, welche Modelle universell sind und welche nicht.

„Einen Computerwissenschaftler werden diese Ergebnisse vielleicht nicht überraschen, weil er mit der Vorstellung vertraut ist, dass universelle Computer prinzipiell alles simulieren können, sogar andere Computer“, meint Ko-Autor Dr. Toby Cubitt vom Fachbereich Computerwissenschaften des UCL. „Aber die Tatsache, dass ein ähnliches Phänomen auch in der Physik auftaucht, ist weit überraschender, und diese Erkenntnis hat bislang noch keinen Eingang in Anwendungen gefunden. In der wissenschaftlichen Gemeinschaft machen wir gerade die Erfahrung, dass Ideen aus der theoretischen Computerwissenschaft, untermauert von harten mathematischen Beweisen, unser Verständnis von der Physik vertiefen können. Es ist im Moment sehr spannend, an der Schnittstelle dieser beiden Gebiete zu arbeiten.”

Aber er betont: „Es handelt sich dabei keineswegs um das gut bekannte Phänomen der Universalität in der statistischen Physik. Universalität erklärt hier, warum sich verschiedene mikroskopische Modelle gleich benehmen. Unsere universellen Modelle sind gewissermaßen sogar das Gegenteil: Sie können ganz unterschiedliche Eigenschaften, sogar jede prinzipiell mögliche, annehmen.“ Und De las Cuevas ergänzt: „Spin-Modelle werden nicht nur in der Physik verwendet. Sie modellieren vielmehr viele andere komplexe Systeme, wie z.B. neuronale Netzwerke, Proteine oder soziale Netzwerke. All diese Systeme kann man vereinfacht mit Hilfe von Objekten (Neuronen, Aminosäuren oder Personen) beschreiben, die miteinander verbunden sind und sich gegenseitig beeinflussen.“ Die neuen Ergebnisse könnten es also ermöglichen, auch für diese Systeme ein tieferes Verständnis zu entwickeln.

Die Forscher beschäftigen sich nun mit der Frage, ob ihre theoretischen Ergebnisse in der Praxis angewandt werden können, um z.B. numerische Simulationen von Vielteilchensystemen zu verbessern, oder um neuartige komplexe Systeme zu konstruieren, von denen man bis jetzt gedacht hat, dass sie mit den zur Zeit zur Verfügung stehenden Techniken nicht herzustellen seien.

Die Arbeit wurden unterstützt vom EU-Projekt SIQS, der Royal Society (UK) sowie der John Templeton Foundation.

Originalveröffentlichung:
Gemma De las Cuevas and Toby S. Cubitt
Simple universal models capture all classical spin physics
Science, 11. März 2016

Kontakt:

Dr. Gemma de las Cuevas
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 - 343
E-Mail: gemma.delascuevas@mpq.mpg.de

Dr. Toby S. Cubitt
University College London
Dept. of Computer Science
66-72 Gower Street
London WC1E 6EA
United Kingdom
Telefon: +44 (0)20 3108 7158
E-Mail: T.Cubitt@cs.ucl.ac.uk

Dr. Olivia Meyer-Streng
Max-Planck-Institut für Quantenoptik
85748 Garching b. München
Telefon: +49 (0)89 32 905 - 213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Spin-Strom aus Wärme: Neues Material für höhere Effizienz
20.11.2017 | Universität Bielefeld

nachricht cw-Wert wie ein Lkw: FH Aachen testet Weihnachtsbaum im Windkanal
20.11.2017 | FH Aachen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

VDI-Expertenforum „Gefährdungsanalyse Trinkwasser"

20.11.2017 | Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Spin-Strom aus Wärme: Neues Material für höhere Effizienz

20.11.2017 | Physik Astronomie

Satellitenbilder zur Erfassung von Biodiversität nur bedingt tauglich

20.11.2017 | Biowissenschaften Chemie

Fall aus dem Datenrettungslabor – USB Sticks mit fehlerhaften Angaben

20.11.2017 | Unternehmensmeldung