Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Glorie der Venus

11.03.2014

Eine regenbogenartige Lichterscheinung auf der Wolkendecke hilft, deren ätzende Bestandteile zu identifizieren

Über den Wolken werden Flugreisende gelegentlich Zeuge einer Glorie. Ursache für diese Lichterscheinung, die einem ringförmigen Regenbogen gleicht, sind die Tröpfchen in den Wolken, die das Sonnenlicht streuen. Wissenschaftler unter Leitung des Göttinger Max-Planck-Instituts für Sonnensystemforschung haben nun erstmals eine Glorie auf einem fremden Planeten, der Venus, aufgenommen. Sie werteten dafür Bilder der ESA-Raumsonde Venus Express aus. Die Kameradaten zeigen zudem, dass die ätzende Schwefelsäure in den Venuswolken zusätzlich reinen Schwefel oder Eisenchlorid enthalten könnte.


Glorie auf der Liebesgöttin: Das Zentrum der konzentrischen farbigen Kreise ist der blassgelbe Fleck in der linken Bildhälfte. Die Glorie erstreckt sich über mindestens 1200 Kilometer; zu ihr tragen nicht nur sichtbares Licht, sondern alle Wellenlängen bei. Um auch die ultravioletten und infraroten Beiträge sichtbar zu machen, wird in dieser Falschfarbendarstellung jeder Wellenlänge in den Kameradaten eine Farbe zugeordnet.

© ESA/MPS/DLR/IDA


Glorie auf der Erde: Wie ein ringförmiger Regenbogen mutet die Lichterscheinung an, die den Schatten des Flugzeugs umgibt.

© Wikimedia Commons

Der Schleier aus Wolken, der unseren inneren Nachbarplaneten umgibt, ist ebenso schön wie lebensfeindlich, denn ätzende Schwefelsäure bildet ihren Hauptbestandteil. Zusammen mit der dichten Atmosphäre, die in erster Linie aus Kohlendioxid besteht, sorgt die Wolkendecke für einen extremen Treibhauseffekt: Auf der Venusoberfläche herrschen Temperaturen von mehr als 400 Grad Celsius.

Die genaue Zusammensetzung der cremig-gelben Wolken ist noch immer unklar. Bereits vor fast 90 Jahren hatten bodengebundene Beobachtungen gezeigt, dass die Wolken ultraviolettes Licht bestimmter Wellenlängen schlucken. Schwefelsäure allein kann diesen Effekt allerdings nicht bewirken.

Mögliche Kandidaten für den unbekannten Stoff gab es seitdem reichlich: Bromwasserstoffsäure, amorpher Schwefel, gasförmiges Chlor und sogar Bakterien wurden ins Spiel gebracht. Hilfe kommt nun von dem Planeten selbst. Denn die Glorie, die sich deutlich in den Daten der Venus Monitoring Camera an Bord der europäischen Raumsonde Venus Express abzeichnet, kann nur unter sehr speziellen Bedingungen entstehen: So müssen die Tröpfchen – oder möglicherweise feste Kristalle – in den Wolken absolut kugelförmig und von einheitlicher Größe sein. Die Breite der konzentrischen Ringe sowie ihre relativen Intensitäten erlauben dann Rückschlüsse auf Brechungseigenschaften und Größe.

„Die wichtigste Voraussetzung, um eine Glorie zu beobachten, ist der richtige Beobachtungsstandort“, sagt Wojciech Markiewicz vom Max-Planck-Institut für Sonnensystemforschung, Erstautor der neuen Studie. Das gilt sowohl auf der Erde als auch auf der Venus. Der Beobachter muss sich genau auf einer Linie zwischen Wolke und Sonne befinden. Die Tröpfchen in den Wolken streuen das Licht der Sonne zurück; dem Beobachter zeigt sich der eigene Schatten auf der Wolkendecke, umgeben von farbigen konzentrischen Kreisen.

Seit April 2011 wurde Venus Express, die seit dem Jahr 2006 unseren Schwesterplaneten umläuft, mehr als zwölfmal an einen geeigneten Beobachtungsstandort manövriert. „Auch in unserem Bild würde sich im Zentrum der Glorie eigentlich der Schatten des Beobachters, also der Raumsonde, zeigen“, sagt Markiewicz. Allerdings trennten ungefähr 6000 Kilometer Sonde und Wolkendecke. Aus dieser Entfernung erscheint der Schatten der nur wenige Meter großen Sonde so klein, dass die Kamera ihn nicht aufzulösen vermag.

Das Bild ist trotzdem eindrucksvoll – und von hohem wissenschaftlichem Wert. Am Computer simulierten die Forscher die optischen Vorgänge, welche die Glorie entstehen lassen, und versuchten so, die Erscheinung genau zu rekonstruieren. Dabei variierten sie Parameter wie Größe und Brechungsindex der Tröpfchen. „In unseren Rechnungen lässt sich die Glorie, die wir beobachtet haben, mit reiner Schwefelsäure nicht reproduzieren“, erklärt Markiewicz.

Die Rechnungen zeigen, dass ein weiterer Stoff im Spiel sein muss. Möglicherweise ist dies der seit Langem gesuchte unbekannte UV-Absorber. Besonders Schwefelsäure-Tröpfchen mit einem Kern aus Eisenchlorid oder einer äußeren Schicht aus reinem Schwefel erweisen sich als vielversprechende Kandidaten.

Ansprechpartner 

Dr. Birgit Krummheuer

Presse- und Öffentlichkeitsarbeit

Max-Planck-Institut für Sonnensystemforschung, Göttingen

Telefon: +49 5556 979-462

 

Dr. Wojtek Markiewicz

Max-Planck-Institut für Sonnensystemforschung, Göttingen

Telefon: +49 5556 979-294

 

Originalpublikation

 
W.J. Markiewicz, E. Petrova, O. Shalygina, M. Almeida, D.V. Titov, S.S. Limaye, N. Ignatiev, T. Roatsch, K.D. Matz
Glory on Venus Cloud Tops and the Unkown UV Absorber
Icarus, online advance publication, 6 March 2014

Dr. Birgit Krummheuer | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/8006096/venus_glorie

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics