Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die erste elektrisch betriebene Lichtantenne der Welt

18.08.2015

Mit elektrischem Strom eine Nanoantenne dazu bringen, Licht auszustrahlen: Das ist Physikern der Universität Würzburg als weltweite Premiere gelungen. Ihre nur 250 Nanometer messende Lichtantenne stellen sie im Fachjournal „Nature Photonics“ vor.

Winzige elektrisch betriebene Lichtquellen werden zukünftig von Nutzen sein – zum Beispiel in den Displays von Smartphones. Dort dürfte wegen der zunehmenden Einbindung von 3D-Techniken die benötigte Pixeldichte rapide ansteigen. Auch auf Computerchips könnten Nanolichtquellen verwendet werden, um Daten verlustarm mit Lichtgeschwindigkeit zwischen verschiedenen Prozessorkernen auszutauschen.


Im Zentrum sitzt ein Goldpartikel: Die erste elektrisch betriebene Lichtantenne der Welt wurde am Physikalischen Institut der Universität Würzburg gebaut.

(Bild: Physikalisches Institut)


Die Würzburger Nanoantenne ist nur 250 Nanometer groß und erzeugt einen kreisförmigen Lichtpunkt.

(Bild: Physikalisches Institut)

Einen Weg zu solchen Lichtquellen zeigen Würzburger Physiker mit einer Pionierarbeit auf: Im Fachjournal „Nature Photonics“ beschreiben sie erstmals die Erzeugung von Licht mit einer elektrisch betriebenen Nanoantenne aus Gold. Realisiert wurde die Antenne in der Arbeitsgruppe von Professor Bert Hecht und am Lehrstuhl für Technische Physik.

Gesetze der Antennentechnik mit Licht anwenden

Wie kann man sich eine Lichtantenne vorstellen? „Sie funktioniert im Wesentlichen wie ihre großen Geschwister im Mobilfunk“, erklärt Bert Hecht: Dort werden durch das Anlegen einer Wechselspannung im Metall Elektronen zum Schwingen angeregt. Das führt dazu, dass die Antennen elektromagnetische Wellen abstrahlen – und das nicht irgendwie, sondern in einer durch die Gestalt der Antenne genau definierten Form und Wellenlänge.

Die Gesetze der Antennentechnik im Nanobereich auf Licht zu übertragen, ist technisch anspruchsvoll. Die Würzburger Physiker mussten sich darum etwas einfallen lassen. Erfolgreich waren sie am Ende mit einer ausgeklügelten Nanostruktur: Ihre Lichtantenne hat zwei Arme, die jeweils mit einem Kontaktdraht versehen sind und deren Enden sich fast berühren.

Der winzige Raum zwischen den Armen ist mit einem Nanopartikel aus Gold präpariert, das den einen Arm berührt und zum anderen Arm einen Spalt von ungefähr einem Nanometer lässt. Der Spalt ist so schmal, dass Elektronen ihn aufgrund des quantenmechanischen Tunneleffekts beim Anlegen einer Spannung überwinden können. Dadurch werden Schwingungen mit optischen Frequenzen erzeugt.

Länge der Antennenarme bestimmt Farbe des Lichts

Die so konstruierte Antenne strahlt elektromagnetische Wellen als sichtbares Licht aus. Dabei wird die Farbe des Lichts durch die Länge der Antennenarme festgelegt. „Damit haben wir die bislang kompakteste elektrisch betriebene Lichtquelle der Welt gebaut, deren Eigenschaften sich zudem noch durch eine Anpassung der Antennengeometrie steuern lassen“, freut sich Hecht.

Prinzipiell lassen sich solche Antennen also bauen, doch bis zur Anwendungsreife ist noch Arbeit zu leisten. Zum einen müssen die Physiker weiter an der Effizienz feilen: Beim Betrieb der Licht-Antenne geht noch zu viel Strom in Form von Wärme verloren. Zum anderen muss die Betriebsstabilität erhöht werden, denn bislang funktioniert die goldene Nanostruktur nur einige Stunden lang.

“Electrically driven optical antennas”, Johannes Kern, René Kullock, Jord Prangsma, Monika Emmerling, Martin Kamp und Bert Hecht. Nature Photonics, Advance Online Publication, 17. August 2015, DOI: 10.1038/nphoton.2015.141

Kontakt

Prof. Dr. Bert Hecht, Physikalisches Institut, Universität Würzburg, T (0931) 31-85863, hecht@physik.uni-wuerzburg.de

Robert Emmerich | Julius-Maximilians-Universität Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher verwandeln Diamant in Graphit
24.11.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Proton-Rekord: Magnetisches Moment mit höchster Genauigkeit gemessen
24.11.2017 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Metamaterial mit Dreheffekt

Mit 3D-Druckern für den Mikrobereich ist es Forschern des Karlsruher Instituts für Technologie (KIT) gelungen ein Metamaterial aus würfelförmigen Bausteinen zu schaffen, das auf Druckkräfte mit einer Rotation antwortet. Üblicherweise gelingt dies nur mit Hilfe einer Übersetzung wie zum Beispiel einer Kurbelwelle. Das ausgeklügelte Design aus Streben und Ringstrukturen, sowie die zu Grunde liegende Mathematik stellen die Wissenschaftler in der aktuellen Ausgabe der renommierten Fachzeitschrift Science vor.

„Übt man Kraft von oben auf einen Materialblock aus, dann deformiert sich dieser in unterschiedlicher Weise. Er kann sich ausbuchten, zusammenstauchen oder...

Im Focus: Proton-Rekord: Magnetisches Moment mit höchster Genauigkeit gemessen

Hochpräzise Messung des g-Faktors elf Mal genauer als bisher – Ergebnisse zeigen große Übereinstimmung zwischen Protonen und Antiprotonen

Das magnetische Moment eines einzelnen Protons ist unvorstellbar klein, aber es kann dennoch gemessen werden. Vor über zehn Jahren wurde für diese Messung der...

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Reibungswärme treibt hydrothermale Aktivität auf Enceladus an

Computersimulation zeigt, wie der Eismond Wasser in einem porösen Gesteinskern aufheizt

Wärme aus der Reibung von Gestein, ausgelöst durch starke Gezeitenkräfte, könnte der „Motor“ für die hydrothermale Aktivität auf dem Saturnmond Enceladus sein....

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mathematiker-Jahrestagung DMV + GDM: 5. bis 9. März 2018 an Uni Paderborn - Über 1.000 Teilnehmer

24.11.2017 | Veranstaltungen

Forschungsschwerpunkt „Smarte Systeme für Mensch und Maschine“ gegründet

24.11.2017 | Veranstaltungen

Schonender Hüftgelenkersatz bei jungen Patienten - Schlüssellochchirurgie und weniger Abrieb

24.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mathematiker-Jahrestagung DMV + GDM: 5. bis 9. März 2018 an Uni Paderborn - Über 1.000 Teilnehmer

24.11.2017 | Veranstaltungsnachrichten

Maschinen über die eigene Handfläche steuern: Nachwuchspreis für Medieninformatik-Student

24.11.2017 | Förderungen Preise

Treibjagd in der Petrischale

24.11.2017 | Biowissenschaften Chemie