Die dreidimensionale Struktur einer Planeten-Geburtsstätte

Die protoplanetare Scheibe um den jungen Stern TW Hydrae. Links Aufnahme im Licht einer Spektrallinie von Kohlenstoffmonosulfid (CS), rechts Aufnahme im Streulicht von Staub in der Scheibe. Links: R. Teague (MPIA), ALMA (ESO/NAOJ/NRAO). Rechts: R. van Boekel (MPIA), ESO

Planeten entstehen in wirbelnden Scheiben aus Gas und Staub – und die räumlichen Strukturen solcher Scheiben enthalten wertvolle Informationen über das Wie der Planetenentstehung. Erst seit einigen Jahren gibt es überhaupt astronomische Aufnahmen, die detailscharf genug sind, um nicht nur die Scheiben als Ganzes zu zeigen, sondern auch einiges von ihrer Struktur sichtbar zu machen.

Jetzt sind Astronomen unter der Leitung von Richard Teague, einem Doktoranden am Max-Planck-Institut für Astronomie, einen Schritt weitergegangen. Anhand bisheriger Bilder von Scheibenstrukturen war nicht zuverlässig zu unterscheiden, ob sichtbare Scheibenstrukturen auf unterschiedliche Materialeigenschaften zurückgingen (z.B. auf größere oder kleinere Staubteilchen) oder auf Unterschiede in der Dichte der Scheibenmaterie.

Dichteunterschiede sind besonders interessant, weil sie die Anwesenheit eines jungen Planeten verraten können – oder aber einer Region, in der die Wahrscheinlichkeit für die Entstehung eines neuen Planeten besonders groß ist. Teague und seine Kollegen kombinierten Beobachtungen an unterschiedlichen Arten von Licht: einerseits dem von den Staubteilchen reflektierten Licht, andererseits Licht, das von Kohlenstoffmonosulfidmolekülen abgestrahlt wird. Auf dieses Weise konnten sie eine ringförmige Lücke nachweisen, in der die Materiedichte weniger als halb so groß ist wie in den benachbarten Scheibenregionen.

Die Lücke befindet sich in beträchtlicher Entfernung vom Stern: rund 95 mal so weit entfernt wie die Erde von der Sonne. Egal, ob sie die Anwesenheit eines Planeten oder laufende Prozesse der Planetenentstehung signalisiert: Beide Möglichkeiten sind für die heutigen Modelle der Planetenentstehung schwer zu erklären. Diese Modelle bieten keine rechte Möglichkeit, wie sich überhaupt in solch einer Scheibe in derart großer Entfernung vom Stern Planeten bilden können.

Die jetzt veröffentlichten Ergebnisse von Teague und Kollegen und eine ähnliche Veröffentlichung Ende 2016 von Andrea Isella und Kollegen an der Rice University in Texas eröffnen eine neue Phase der Untersuchung von planetaren Geburtsstätten: Astronomen beginnen, die dreidimensionalen Unterstrukturen der protoplanetaren Scheiben zu kartieren.
Hintergrundinformationen

Die hier beschriebenen Ergebnisse sind als R. Teague et al., „A Surface Density Perturbation in the TW Hydrae Disk at 95 au Traced by Molecular Emission“ im Astrophysical Journal 835 (2017) erschienen.

Die beteiligten Wissenschaftler sind Richard Teague, Dmitry Semenov, Thomas Henning, Tillman Birnstiel, Roy van Boekel (alle MPIA) in Zusammenarbeit mit Uma Gorti (NASA Ames und SETI-Institut), Stéphane Guilloteau, Anne Dutrey (beide Universität Bordeaux und CNRS) und Edwige Chapillon (Universität Bordeaux, CNRS und IRAM).

http://www.mpia.de/aktuelles/wissenschaft/2017-01-twhydrae-scheibe – Online-Version der Pressemitteilung
http://iopscience.iop.org/article/10.3847/1538-4357/835/2/228 – Fachartikel von Teague et al. 2017
http://adsabs.harvard.edu/abs/2016PhRvL.117y1101I – Fachartikel von Isella et al. 2016

Media Contact

Dr. Markus Pössel Max-Planck-Institut für Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Nanofasern befreien Wasser von gefährlichen Farbstoffen

Farbstoffe, wie sie zum Beispiel in der Textilindustrie verwendet werden, sind ein großes Umweltproblem. An der TU Wien entwickelte man nun effiziente Filter dafür – mit Hilfe von Zellulose-Abfällen. Abfall…

Entscheidender Durchbruch für die Batterieproduktion

Energie speichern und nutzen mit innovativen Schwefelkathoden. HU-Forschungsteam entwickelt Grundlagen für nachhaltige Batterietechnologie. Elektromobilität und portable elektronische Geräte wie Laptop und Handy sind ohne die Verwendung von Lithium-Ionen-Batterien undenkbar. Das…

Wenn Immunzellen den Körper bewegungsunfähig machen

Weltweit erste Therapie der systemischen Sklerose mit einer onkologischen Immuntherapie am LMU Klinikum München. Es ist ein durchaus spektakulärer Fall: Nach einem mehrwöchigen Behandlungszyklus mit einem immuntherapeutischen Krebsmedikament hat ein…

Partner & Förderer