Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Choreografie eines Elektronenpaars

18.12.2014

Die Bewegung der beiden Elektronen im Heliumatom lässt sich mit zeitlich genau aufeinander abgestimmten Laserblitzen abbilden und steuern

Physiker verfeinern zusehends ihre Kontrolle über die Materie. Ein deutsch-spanisches Team um Forscher des Max-Planck-Instituts für Kernphysik in Heidelberg hat nun erstmals die Bewegung der beiden Elektronen eines Heliumatoms abgebildet und den elektronischen Paartanz sogar gesteuert.


Elektronischer Paartanz: Heidelberger Physiker haben eine pulsierende Bewegung des Elektronpaars in einem Heliumatom gefilmt. Bei 15,3 Femtosekunden (fs) befinden sich beide Elektronen dicht am Kern (Zentrum des Bildes) und entfernen sich dann von ihm. Die Farbe steht für die Wahrscheinlichkeit, ein Elektron am Ort A (vertikale Achse) und das zweite Elektron am Ort B (horizontale Achse) auf einer Schnittlinie durch das Atom (entlang der Laserpolarisationsrichtung) zu finden. Bei 16,3 Femtosekunden erreichen sie wieder ihre Ausgangsposition; sie bewegen sich also im Takt von etwa einer Femtosekunde.

© MPI für Kernphysik

Gelungen ist dies den Wissenschaftlern mit unterschiedlichen Laserblitzen, die sie zeitlich sehr genau aufeinander abstimmten. Dabei verwendeten sie neben sichtbaren Lichtblitzen auch ultraviolette Pulse, die nur einige Hundert Attosekunden dauerten. Eine Attosekunde entspricht dem Milliardstel Teil einer Milliardstel Sekunde. Physiker möchten die Bewegung von Elektronenpaaren nicht zuletzt deshalb gezielt beeinflussen, weil sie damit die Chemie revolutionieren wollen: Wenn sie die gepaarten Bindungselektronen in Molekülen mit Laserpulsen verschieben könnten, würden sie möglicherweise Substanzen erzeugen, die sich mit den üblichen chemischen Mitteln nicht herstellen lassen.

Elektronen sind kaum zu fassen. Den genauen Ort, an dem sie sich in einem Atom befinden, können Physiker nicht feststellen. Immerhin können sie den Raum eingrenzen, in dem sich die Ladungsträger höchstwahrscheinlich aufhalten. Wenn Elektronen sich bewegen, verändern sich diese Bereiche ihrer größten Aufenthaltswahrscheinlichkeit. In manchen Zuständen der Elektronen – Physiker sprechen von Überlagerungszuständen – geschieht dies in einem Pulsieren mit regelmäßigem Takt.

Genau diese pulsierende Bewegung haben Wissenschaftler um Thomas Pfeifer, Direktor am Max-Planck-Institut für Kernphysik nun in der Bilderserie eines Heliumatoms festgehalten. Dabei verfolgten sie, wie das Elektronenpaar in einem Moment nahe um den Atomkern tanzt und sich im nächsten Augenblick etwas von ihm entfernt. Mit der bloßen Beobachterrolle begnügten sich die Forscher jedoch nicht, sondern griffen auch aktiv in die Choreografie der Elektronen ein. So gaben sie gewissermaßen den Rhythmus des elektronischen Paartanzes vor. „Die Bewegung einzelner Elektronen im Atom hat man bereits häufiger abgebildet und auch manipuliert“, sagt Christian Ott, Erstautor der Studie. „Wir haben dies nun für ein kurzzeitig gebundenes Elektronenpaar erreicht.“

Werden Elektronen verschoben, lassen sich molekulare Verbindungen knüpfen

Das Verhalten von zwei Elektronen in einer konzertierten Aktion zu analysieren und zu steuern, ist zum einen für Physiker hilfreich, die besser verstehen möchten, wie Atome und Moleküle mit Licht wechselwirken. Denn dabei mischen meist zwei oder mehr Elektronen mit. Zum anderen ist es für die Chemie nützlich, Elektronenpaare dirigieren zu können. Denn die typische chemische Bindung besteht aus genauso einem Elektronenpaar, sodass Chemiker fast immer mindestens zwei Elektronen bewegen müssen, wenn sie eine molekulare Verbindung knüpfen oder lösen möchten.

Um die Choreografie der Elektronen in einem Heliumatom zu filmen und zu steuern, schicken die Heidelberger Physiker zwei Laserpulse durch eine Zelle mit Heliumgas. Dabei kommt es nicht nur auf die Energie, also die Farbe der Blitze an, sondern auch auf deren Intensität und auf den Abstand zwischen ihnen. Mit einem ultravioletten Blitz befördern die Forscher die Elektronen des Heliums zunächst in den ultraschnell pulsierenden Zustand. Dies gelingt Ihnen aber nur, weil die Dauer dieses Blitzes kürzer ist als eine Femtosekunde (der Millionste Teil einer Milliardstel Sekunde). Denn solange benötigt das Elektronenpaar für einen Zyklus der pulsierenden Bewegung, in der sich das Paar erst näher am Kern befindet, sich dann davon entfernt und wieder zum Kern zurückkehrt.

Mithilfe eines schwachen sichtbaren Laserpulses ermitteln sie dann, wo die Elektronen gerade tanzen. Und indem sie den Abstand zwischen dem ultravioletten Attosekunden-Puls und dem sichtbaren Puls variieren, drehen sie gewissermaßen einen Film des Elektronentanzes. „Dabei bilden wir zwar nicht direkt ab, wo sich die Elektronen aufhalten“, erklärt Thomas Pfeifer. „Der sichtbare Puls liefert uns aber die relative Phase des Überlagerungszustandes.“ Die Phase beschreibt das Auf und Ab einer Schwingung, und damit also die rhythmische Bewegung des Elektronenpaares. Hier gibt sie Physikern Auskunft darüber, an welcher Stelle ihres natürlichen Partnertanzes um das Heliumatom sich die Elektronen gerade befinden.

Um die Tanzfiguren zu ermitteln, nutzt das Heidelberger Team Erkenntnisse früherer Arbeiten. Damit bestimmten sie, wo sich die Elektronen aufhalten, wenn sie sich nicht bewegen. „Mit der hier gemessenen Information über die Phase und mit dem vorhandenen Vorwissen rekonstruieren wir, wo sich die Elektronen befinden“, so Pfeifer. Dabei helfen ihm und seinen Mitarbeitern theoretische Modelle, mit denen sie auch den Elektronentanz und die Wirkung der Laserpulse simulieren.

Intensive sichtbare Laserpulse ändern den Rhythmus des Elektronentanzes

Simulationen brauchen die Heidelberger Physiker auch, um den zweiten Teil ihrer Experimente zu interpretieren. Dabei dient ihnen der sichtbare Laserpuls nicht mehr nur als Kamera, sondern als Steuerhilfe für die pulsierende Elektronenbewegung. Wenn sie nämlich die Intensität des Blitzes erhöhen, verschieben sich die Zeitpunkte, zu denen sich die Elektronen nahe am Atomkern beziehungsweise weiter weg davon aufhalten. Wie sich der Rhythmus und damit die Choreographie des Elektronentanzes ändert, halten die Forscher ebenfalls in einer Bildsequenz fest.

Bisher können Thomas Pfeifer und seine Kollegen noch nicht alle Details erklären, die sie in den Experimenten mit intensiven Laserblitzen beobachten. Das wollen sie nun mit umfassenderen Untersuchungen, wie diese Pulse wirken, ändern. In künftigen Experimenten möchten Sie zudem das weitere Schicksal des Elektronenpaares genau verfolgen. Der Elektronentanz im Überlagerungszustand endet nämlich damit, dass einer der beiden Partner aus dem Atom geschleudert wird und das Atom folglich ionisiert wird. Solche Ionisationen spielen ebenfalls bei vielen chemischen Reaktionen eine Rolle. Solche wilden Tänze zweier Elektronen besser zu verstehen, könnte Chemikern also Erkenntnisse bringen, wie sich eine Reaktion in eine gewünschte Richtung lenken lässt. Spätestens dann dürfte die Attosekunden-Physik auch zu einem Werkzeug der Chemie werden.

Ansprechpartner

Dr. Thomas Pfeifer

Telefon:+49 6221 516-380Fax:+49 6221 516-802

Originalpublikation

 
Christian Ott, Andreas Kaldun, Luca Argenti, Philipp Raith, Kristina Meyer, Martin Laux, Yizhu Zhang, Alexander Blättermann, Steffen Hagstotz, Thomas Ding, Robert Heck, Javier Madroñero, Fernando Martín and Thomas Pfeifer
Reconstruction and control of a time-dependent two-electron wave packet

Dr. Thomas Pfeifer | Max-Planck-Institut für Kernphysik, Heidelberg
Weitere Informationen:
http://www.mpg.de/8808649/elektronen-bewegung-attosekunde

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Hochspannung für den Teilchenbeschleuniger der Zukunft
24.05.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten