Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Betriebsvorbereitungen für Wendelstein 7-X beginnen

12.05.2014

Hauptmontage der Fusionsanlage abgeschlossen / Festakt am 20. Mai in Greifswald

Nach Jahren der Rechnung, Planung, Bauteilfertigung und Montage tritt das Projekt Wendelstein 7-X ab Mai in eine neue Phase: Im Max-Planck-Institut für Plasmaphysik (IPP) in Greifswald haben die Vorbereitungen für den Betrieb dieser weltweit größten Fusionsanlage vom Typ Stellarator begonnen.


Ende 2011 war das Innenleben von Wendelstein 7-X noch sichtbar.

Foto: IPP, Wolfgang Filser


Blick in die Experimenthalle: Die Hauptmontage ist abgeschlossen.

Foto: IPP, Bernhard Ludewig

Die Montage begann im April 2005: Ein Spezialgreifer schob die erste von 70 übermannsgroßen Magnetspulen vorsichtig über einen nur fingerbreiten Spalt auf ein eigenwillig geformtes Stahlgefäß. Die sechs Tonnen schwere Spule und das Gefäßstück waren die ersten Bauteile der Fusionsanlage Wendelstein 7-X, die von ihren in ganz Europa verteilten Fertigungsstätten in Greifswald ankamen. Hier, mehr als 800 Kilometer vom Stamminstitut im bayerischen Garching entfernt, hatte das IPP im Zuge des „Forschungsaufbaus Ost“ 1994 einen zweiten Standort gegründet.

Beide Institutsteile verfolgen das gleiche Ziel: die Energieproduktion der Sonne auf der Erde nachzuahmen. Ein Fusionskraftwerk soll aus der Verschmelzung von Atomkernen Strom erzeugen. Weil das Fusionsfeuer erst bei einer Temperatur von über 100 Millionen Grad zündet, darf der Brennstoff – ein dünnes Wasserstoffplasma – nicht in Kontakt mit den kalten Wänden kommen.

Von Magnetfeldern gehalten schwebt er nahezu berührungsfrei im Inneren einer Vakuumkammer. Die beiden Bauarten für den magnetischen Käfig untersucht das Institut räumlich getrennt: in Garching läuft der Tokamak ASDEX Upgrade, in Greifswald wird der Stellarator Wendelstein 7-X aufgebaut.

Noch sind die einfacher konstruierten Tokamaks führend. Heute traut man nur einem Tokamak, wie dem internationalen Testreaktor ITER, ein energielieferndes Plasma zu. „Aber“, sagt Projektleiter Prof. Dr. Thomas Klinger, „das Stellarator-Prinzip lässt Stärken erwarten, wo der Mitstreiter Schwächen zeigt.“ Denn im Unterschied zu den pulsweise arbeitenden Tokamaks sind Stellaratoren für Dauerbetrieb geeignet – dank ihres speziell aufgebauten Magnetsystems.

Um dies zu beweisen, ist Wendelstein 7-X das Schlüsselexperiment. Die Struktur seines Magnetfelds ist das Ergebnis ausgefeilter Optimierungsrechnungen der Abteilung „Stellarator-Theorie“ und ihrer über zehnjährigen Suche nach einem besonders stabilen und wärmeisolierenden magnetischen Käfig. Prof. Klinger: „Mit Wendelstein 7-X soll die Qualität von Plasmagleichgewicht und -einschluss erstmals der eines Tokamak ebenbürtig werden. Das Experiment soll zeigen, dass auch Stellaratoren kraftwerkstauglich sind.“ Und mit 30 Minuten langen Entladungen soll es ihr wesentliches Plus vorführen, den Dauerbetrieb. Energie erzeugen muss Wendelstein 7-X dazu nicht: Viele Eigenschaften eines gezündeten Plasmas lassen sich vom Tokamak ITER auf Stellaratoren übertragen.

Die Anlage besteht aus fünf nahezu baugleichen Modulen, die vormontiert und in der Experimentierhalle kreisförmig zusammengesetzt wurden: 70 supraleitende Spulen, aufgefädelt auf ein stählernes Plasmagefäß, sind von einer ringförmigen Hülle umschlossen. In ihrem luftleer gepumpten Innenraum werden die Magnetspulen später mit flüssigem Helium auf Supraleitungstemperatur bis nahe an den absoluten Nullpunkt abgekühlt. So verbrauchen sie kaum noch Energie. Neben den Großkomponenten waren kilometerweise Kühlrohre, Stromleiter und Messkabel, zahlreiche Beobachtungsstutzen und Sensoren zu verbauen, stets begleitet von Kontrollvermessungen und Dichtigkeitsprüfungen der vielen tausend Schweißnähte.

„Bereits die industrielle Fertigung und der Aufbau waren ein Experiment für sich“, sagt Prof. Klinger, „eine Aufgabe, die wir zunächst unterschätzt hatten: Die Supraleitungstechnik gepaart mit der anspruchsvollen Geometrie der Bauteile hat uns vor extreme Qualitätsanforderungen gestellt“. Tatsächlich hat der Aufbau nicht wie geplant sechs, sondern neun Jahre gedauert. Konstruktion und Fertigung, Vermessung und Berechnung – die komplexen Formen verlangten neue Methoden, die in Institut und Industrie erst während des Aufbaus entwickelt werden konnten. 2007 wurde daher ein neuer Basisplan aufgestellt. Seither liegt die Montage von Wendelstein 7-X im Zeit- und Kostenplan, seit 2009 sogar – als erstes Forschungsprojekt in Deutschland – nach Industrienorm ISO 9001 zertifiziert.

Die Bauteile für Wendelstein 7-X fertigten Firmen in ganz Europa. Die von Bund, Land und EU getragenen Investitionskosten beliefen sich auf 370 Millionen Euro. Aufträge im Wert von über 80 Millionen gingen an Unternehmen in der Region. Zahlreiche Forschungseinrichtungen im In- und Ausland waren am Aufbau der Anlage beteiligt. So trug im Rahmen der Helmholtz-Gemeinschaft Deutscher Forschungszentren das Karlsruher Institut für Technologie die Verantwortung für die komplette Mikrowellen-Plasmaheizung; das Forschungszentrum Jülich baut Diagnostiken und fertigte die aufwändigen Verbindungen der supraleitenden Magnetspulen. Für deren Einbau investierten Spezialisten für Supraleitungstechnik der Polnischen Akademie der Wissenschaften in Krakau über 160 Personenjahre Arbeitszeit. Die US-amerikanischen Fusionsinstitute in Princeton, Oak Ridge und Los Alamos trugen u.a. mit magnetischen Zusatzspulen und Messgeräten im Wert von über 7,5 Millionen Dollar zur Ausrüstung von Wendelstein 7-X bei.

Anfang Mai wurde die Hülle der Anlage geschlossen, die ersten Pumpen liefen an. Ein Festakt am 20. Mai bildet den Auftakt für die nächste Arbeitsphase, die Betriebsvorbereitung. Dabei werden alle technischen Systeme getestet: das Vakuum in den Gefäßen, das Kühlsystem, die supraleitenden Spulen und das von ihnen erzeugte Magnetfeld. Prof. Klinger: „Wenn alles gut funktioniert, können wir in ungefähr einem Jahr das erste Plasma erzeugen“.

Weitere Informationen:

http://www.ipp.mpg.de/ippcms/de/presse/pi/03_14_pi

Isabella Milch | Max-Planck-Institut

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Stabile Quantenbits
08.12.2017 | Universität Konstanz

nachricht Neue Erscheinungsform magnetischer Monopole entdeckt
08.12.2017 | Institute of Science and Technology Austria

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Papstar entscheidet sich für tisoware

08.12.2017 | Unternehmensmeldung

Natürliches Radongas – zweithäufigste Ursache für Lungenkrebs

08.12.2017 | Unternehmensmeldung

„Spionieren“ der versteckten Geometrie komplexer Netzwerke mit Hilfe von Maschinenintelligenz

08.12.2017 | Biowissenschaften Chemie