Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Diamantplanet

26.08.2011
Radiobeobachtungen zeigen die Umwandlung eines Sternsystems in einen Millisekundenpulsar und seinen planetaren Begleiter

Ein Stern, der sich in einen Planeten aus Diamant verwandelt? Was wie Science-Fiction klingt, scheint Realität zu sein. Die Entdeckung gelang einem internationalen Team mit Wissenschaftlern aus Australien, Italien, Großbritannien, den USA und Deutschland, darunter Michael Kramer vom Bonner Max-Planck-Institut für Radioastronomie. Die Forscher fanden den Diamantplaneten mit dem australischen 64-Meter-Parkes-Radioteleskop. Offenbar kreist er um einen ungewöhnlichen Stern mit extrem hoher Dichte, einen Pulsar.


Ein verrücktes Paar: Das Bild zeigt den Millisekundenpulsar PSR J1719-1438 mit 5,7 ms Pulsperiode im Zentrum sowie die Umlaufbahn des Planeten im Vergleich zur Größe der Sonne (in Gelb markiert). © Matthew Bailes


Das 64-Meter-Parkes-Radioteleskop in Australien.
© CSIRO Astronomy and Space Science (CASS)

Pulsare stellen extreme Endstadien der Sternentwicklung dar. Es sind schnell rotierende Neutronensterne von der Größe einer Stadt wie Köln, die einen stark gebündelten Strahl von Radiowellen aussenden. Streicht dieser Strahl aufgrund der Rotation des Sterns – ähnlich dem Lichtkegel eines Leuchtturms – über die Erde, fangen Radioteleskope ein regelmäßiges Signal auf, das zu pulsieren scheint. Daher heißt ein solches Objekt Pulsar.

Bei dem neu entdeckten Pulsar mit der Bezeichnung PSR J1719-1438 bemerkten die Astronomen eine regelmäßige Modulation in den Ankunftszeiten der Signale. Verursacht wird diese „Störung“ offenbar durch die Gravitation eines massearmen Begleiters. Die Art der Modulation verriet den Forschern einiges über den kleinen Himmelskörper: Mit einem Durchmesser von nur 60000 Kilometern ist er etwa halb so groß wie Jupiter. Er umkreist den Pulsar in gerade mal zwei Stunden und zehn Minuten in einem Abstand von 600000 Kilometern – das ist etwas weniger als der Radius unserer Sonne. Damit läuft der Planet so nah um den Pulsar, dass ihn die Schwerkraft eigentlich auseinanderreißen müsste.

„Die Dichte des Planeten ist mindestens so hoch wie die von Platin und verrät uns viel über seinen Ursprung“, sagt der Leiter des Teams, Matthew Bailes von der Swinburne University of Technology in Australien. Die Wissenschaftler glauben, dass der Begleitplanet der winzige Kern eines einst massereichen Sterns ist. Nur knapp entging er der Zerstörung, da seine übrige Materie einst von dem Pulsar aufgesogen wurde.

J1719-1438 gehört zu einer extrem schnell rotierenden Sorte von Neutronensternen, Millisekundenpulsare genannt. Er dreht sich mehr als 10000-mal pro Minute um die eigene Achse, hat die 1,4-fache Masse der Sonne, aber einen Radius von nur rund 20 Kilometern. Ungefähr 70 Prozent der Pulsare besitzen Partner unterschiedlicher Art. Die Astronomen nehmen an, dass es diese Begleiter sind, die noch als Stern einen alten, langsam rotierenden Pulsar durch den Transfer von Masse auf eine sehr hohe Umlaufgeschwindigkeit beschleunigen. Das Resultat ist ein schnell rotierender Millisekundenpulsar mit einem in der Masse geschrumpften Begleiter – häufig einem Weißen Zwerg.

Beim Objekt PSR J1719-1438 ist das Paar so dicht beisammen, dass es sich bei dem Begleiter nur um einen sehr stark massereduzierten Weißen Zwerg handeln kann, der seine gesamten äußeren Schichten und mehr als 99,9 Prozent der ursprünglichen Masse verloren hat. Der Rest dürfte überwiegend aus Kohlenstoff und Sauerstoff bestehen, denn mit leichteren Elementen wie Wasserstoff und Helium lassen sich die aus den Beobachtungen erhaltenen Daten nicht erklären. Die abgeleitete Dichte lässt darauf schließen, dass das Material mit Sicherheit in einem kristallinen Zustand vorliegt; ein großer Teil des Sterns könnte daher ähnlich wie ein Diamant aufgebaut sein.

„Das endgültige Schicksal dieses Doppelsterns hängt von Masse und Umlaufperiode des Gebersterns zur Zeit des Massentransfers ab. Das seltene Auftreten von Millisekundenpulsaren mit Begleitern von Planetenmasse bedeutet, dass die Entstehung solcher exotischen Planeten eher die Ausnahme als die Regel darstellt und das Zusammentreffen von speziellen Bedingungen erforderlich macht“, sagt Benjamin Stappers von der Universität Manchester.

Die Daten zu dem Pulsar-Planeten-Paar wurden durch nachfolgende Beobachtungen mit dem Lovell-Radioteleskop in Großbritannien sowie einem der beiden Keck-Teleskope auf Hawaii bestätigt. Das System liegt etwa 4000 Lichtjahre entfernt in Richtung des Sternbilds Serpens (Schlange) in der Ebene unserer Milchstraße. Der Pulsar selbst wurde in einer Datenmenge von insgesamt 200000 Gigabyte identifiziert – mithilfe von speziellen Analyseprogrammen auf Supercomputern an der Swinburne University of Technology, der Universität Manchester und am INAF-Osservatorio Astronomico di Cagliari auf Sardinien.

Das Projekt ist Teil einer systematischen Suche nach Pulsaren am gesamten Firmament, an der sich das 100-Meter-Radioteleskop Effelsberg des Max-Planck-Instituts für Radioastronomie mit Messungen in der nördlichen Hemisphäre beteiligt. „Wir haben hier die bisher größte und empfindlichste Kartierung von Pulsaren am ganzen Himmel“, sagt Michael Kramer, Direktor am Bonner Max-Planck-Institut. „Wir erwarten eine Reihe von aufregenden neuen Ergebnissen mit diesem Programm. Es ist schön zu sehen, dass dies bereits losgeht und es wird noch mehr kommen. Denn es gibt noch eine ganze Menge, was wir über Pulsare und fundamentale Physik in den kommenden Jahren herausfinden wollen.“

Ansprechpartner
Dr. Norbert Junkes
Öffentlichkeitsarbeit
Max-Planck-Institut für Radioastronomie, Bonn
Telefon: +49 228 525-399
E-Mail: njunkes@mpifr-bonn.mpg.de
Prof. Dr. Michael Kramer
Direktor
Max-Planck-Institut für Radioastronomie, Bonn
Telefon: +49 228 525-278
Fax: +49 228 525-436
E-Mail: mkramer@mpifr-bonn.mpg.de
Originalveröffentlichung
M. Bailes et al.
Transformation of a Star into a Planet in a Millisecond Pulsar Binary
Science, 26. August 2011

Dr. Norbert Junkes | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/4403392/Diamantplanet_Pulsar_Neutronensterne

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

nachricht Innovative High Power LED Light Engine für den UV Bereich
22.06.2017 | Omicron - Laserage Laserprodukte GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Im Focus: Forscher entschlüsseln erstmals intaktes Virus atomgenau mit Röntgenlaser

Bahnbrechende Untersuchungsmethode beschleunigt Proteinanalyse um ein Vielfaches

Ein internationales Forscherteam hat erstmals mit einem Röntgenlaser die atomgenaue Struktur eines intakten Viruspartikels entschlüsselt. Die verwendete...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

Forschung zu Stressbewältigung wird diskutiert

21.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Individualisierte Faserkomponenten für den Weltmarkt

22.06.2017 | Physik Astronomie

Evolutionsbiologie: Wie die Zellen zu ihren Kraftwerken kamen

22.06.2017 | Biowissenschaften Chemie

Spinflüssigkeiten – zurück zu den Anfängen

22.06.2017 | Physik Astronomie