Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Diamant zum Supermikroskop

01.02.2013
Stuttgarter Physiker weisen Kernspinsignale in wenige Nanometer kleinem Öltropfen nach

Ein neuer Sensor aus Diamant ist klein und empfindlich genug, um das Kernspin-Magnetfeld eines wenige Nanometer kleinen Volumens nachzuweisen. Das berichten Physiker der Universität Stuttgart und des IBM-Forschungszentrums Almaden/USA zeitgleich in der neuesten Ausgabe des Wissenschaftsmagazins "Science"*).


Computervisualisierung des Experiments zur Kernspin-Detektion. Mit einem einzelnen Farbzentrum in Diamant (roter Punkt) lässt sich das Kernspin-Magnetfeld eines wenige Nanometer großen Volumens (farbiger Tropfen, obere Bildhälfte) nachweisen. Universität Stuttgart

Dieser Durchbruch könnte zur Entwicklung eines Nano-Kernspintomographen führen, einem sehr mächtigen Mikroskop, das dreidimensionale Aufnahmen einzelner Moleküle ermöglicht. Ein solches Mikroskop würde nicht nur bisher unsichtbare Details sichtbar machen, sondern auch Einblicke in deren Eigenschaften wie etwa die chemische Zusammensetzung geben. In Biologie und Medizin wie auch in den Materi-alwissenschaften käme ein solches Instrument einer Revolution gleich.

Beide Gruppen verwendeten als Magnetfeldsensor eine Stickstoff-Leerstelle in Diamant, ein rot leuch-tender Farbdefekt, wie er in großer Zahl in roten Schmuckdiamanten vorkommt. Durch geschickte Manipulation mit Mikrowellen und Laserlicht lässt sich aus dem Licht eines einzelnen solchen Farb-zentrums das Magnetfeld seiner Umgebung auslesen. Ein sehr flaches Farbzentrum, das nur wenige Atomlagen unter der Diamantoberfläche liegt, kann somit das Magnetfeld von Molekülen auf der Oberfläche messen.

Genau dieser Schritt ist den Forschern jetzt gelungen: Sie haben mit dieser Technik das Magnetfeld der Atomkerne in Öl und Plastikbeschichtungen nachgewiesen, die sie auf die Diamantoberfläche aufgebracht hatten. Sie nutzten dabei die Tatsache, dass Atomkerne ein charakteristisches Magnet-feld erzeugen, das mit einer bestimmten Frequenz schwingt. Dieser Effekt wird unter anderem auch in klinischen Kernspintomographen genutzt, die durch das Aufnehmen einer Magnetfeldkarte die Vertei-lung von Wasserstoffkernen im menschlichen Körper sichtbar machen. Klinische Geräte können hier-bei lediglich Details von einem Millimeter Größe auflösen. Die neue Methode kann dagegen Kernspin-signale in einem millionenfach kleineren Volumen von nur wenigen Nanometern Größe nachweisen. Dieses Volumen entspricht einem einzelnen biologischen Molekül, etwa einem Antikörper.

Die Detektion von Kernspinsignalen solch kleiner Mengen war bisher nur mit extrem aufwendigen Anlagen möglich, die in Vakuum und bei Temperaturen nahe des absoluten Nullpunkts arbeiten. Die jetzt veröffentlichte Technik funktioniert dagegen bei Raumtemperatur und besteht lediglich aus einem Kunstdiamanten in einem Mikroskop. Der Aufbau benötigt nicht einmal ein hohes Magnetfeld, ist tech-nisch also sogar einfacher als klinische Tomographen.

Die nächste große Herausforderung besteht darin, diesen Sensor zur Aufnahme von dreidimensiona-len Kernspin-Bildern einzusetzen. In beiden jetzt veröffentlichten Studien war das verwendete Farb-zentrum fest in das Diamantgitter eingebaut. Das Magnetfeld der Beschichtung ließ sich damit zwar nachweisen, nicht aber abbilden. Das gemessene Signal entspricht gewissermaßen einem einzigen Pixel eines Kernspin-Bildes. Um ein komplettes Bild aufzunehmen, müsste beispielsweise ein Nano-Diamant mit einem einzelnen Farbzentrum als Sensor in ein Rastersondenmikroskop eingebaut wer-den. Alternativ könnten, wie in klinischen Tomographen, Magnetfeldgradienten das Bild im Signal der Kerne codieren. Beide Schritte scheinen machbar und lassen es realistisch erscheinen, in naher Zu-kunft dreidimensionale Bilder einzelner Moleküle aufzunehmen.

Dieses Ziel wird in zahlreichen Labors auf der ganzen Welt mit großem Aufwand verfolgt. Mit welchem Hochdruck das geschieht lässt sich auch daran ablesen, dass der jetzige Durchbruch zeitgleich in zwei Arbeitsgruppen gelungen ist. Das Rennen um den nächsten großen Schritt ist mit der jetzigen Veröffentlichung bereits eröffnet.

*) Originalpublikation:
Tobias Staudacher, Fazhan Shi, Sébastien Pezzagna, Jan Meijer, Jiangfeng Du, Carlos A. Meriles, Friedemann Reinhard, Jörg Wrachtrup: Nuclear magnetic resonance spectroscopy on a (5nm)3 sam-ple volume, doi:10.1126/science.1231675
Weitere Informationen:
Dr. Friedemann Reinhard, Universität Stuttgart,3. Physikalisches Institut, , Tel. 0711/685-65228, E-Mail: f.reinhard (at) physik.uni-stuttgart.de

Andrea Mayer-Grenu, Universität Stuttgart, Abt. Hochschulkommunikation, Tel. 0711/685-82176, E-Mail: andrea.mayer-grenu (at) hkom.uni-stuttgart.de

Andrea Mayer-Grenu | idw
Weitere Informationen:
http://www.uni-stuttgart.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Freie Elektronen in Sonnen-Protuberanzen untersucht
25.07.2017 | Georg-August-Universität Göttingen

nachricht Magnetische Quantenobjekte im "Nano-Eierkarton": PhysikerInnen bauen künstliche Fallen für Fluxonen
25.07.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

IT-Experten entdecken Chancen für den Channel-Markt

25.07.2017 | Unternehmensmeldung

Erst hot dann Schrott! – Elektronik-Überhitzung effektiv vorbeugen

25.07.2017 | Seminare Workshops

Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark

25.07.2017 | Biowissenschaften Chemie