Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Diamant zum Supermikroskop

01.02.2013
Stuttgarter Physiker weisen Kernspinsignale in wenige Nanometer kleinem Öltropfen nach

Ein neuer Sensor aus Diamant ist klein und empfindlich genug, um das Kernspin-Magnetfeld eines wenige Nanometer kleinen Volumens nachzuweisen. Das berichten Physiker der Universität Stuttgart und des IBM-Forschungszentrums Almaden/USA zeitgleich in der neuesten Ausgabe des Wissenschaftsmagazins "Science"*).


Computervisualisierung des Experiments zur Kernspin-Detektion. Mit einem einzelnen Farbzentrum in Diamant (roter Punkt) lässt sich das Kernspin-Magnetfeld eines wenige Nanometer großen Volumens (farbiger Tropfen, obere Bildhälfte) nachweisen. Universität Stuttgart

Dieser Durchbruch könnte zur Entwicklung eines Nano-Kernspintomographen führen, einem sehr mächtigen Mikroskop, das dreidimensionale Aufnahmen einzelner Moleküle ermöglicht. Ein solches Mikroskop würde nicht nur bisher unsichtbare Details sichtbar machen, sondern auch Einblicke in deren Eigenschaften wie etwa die chemische Zusammensetzung geben. In Biologie und Medizin wie auch in den Materi-alwissenschaften käme ein solches Instrument einer Revolution gleich.

Beide Gruppen verwendeten als Magnetfeldsensor eine Stickstoff-Leerstelle in Diamant, ein rot leuch-tender Farbdefekt, wie er in großer Zahl in roten Schmuckdiamanten vorkommt. Durch geschickte Manipulation mit Mikrowellen und Laserlicht lässt sich aus dem Licht eines einzelnen solchen Farb-zentrums das Magnetfeld seiner Umgebung auslesen. Ein sehr flaches Farbzentrum, das nur wenige Atomlagen unter der Diamantoberfläche liegt, kann somit das Magnetfeld von Molekülen auf der Oberfläche messen.

Genau dieser Schritt ist den Forschern jetzt gelungen: Sie haben mit dieser Technik das Magnetfeld der Atomkerne in Öl und Plastikbeschichtungen nachgewiesen, die sie auf die Diamantoberfläche aufgebracht hatten. Sie nutzten dabei die Tatsache, dass Atomkerne ein charakteristisches Magnet-feld erzeugen, das mit einer bestimmten Frequenz schwingt. Dieser Effekt wird unter anderem auch in klinischen Kernspintomographen genutzt, die durch das Aufnehmen einer Magnetfeldkarte die Vertei-lung von Wasserstoffkernen im menschlichen Körper sichtbar machen. Klinische Geräte können hier-bei lediglich Details von einem Millimeter Größe auflösen. Die neue Methode kann dagegen Kernspin-signale in einem millionenfach kleineren Volumen von nur wenigen Nanometern Größe nachweisen. Dieses Volumen entspricht einem einzelnen biologischen Molekül, etwa einem Antikörper.

Die Detektion von Kernspinsignalen solch kleiner Mengen war bisher nur mit extrem aufwendigen Anlagen möglich, die in Vakuum und bei Temperaturen nahe des absoluten Nullpunkts arbeiten. Die jetzt veröffentlichte Technik funktioniert dagegen bei Raumtemperatur und besteht lediglich aus einem Kunstdiamanten in einem Mikroskop. Der Aufbau benötigt nicht einmal ein hohes Magnetfeld, ist tech-nisch also sogar einfacher als klinische Tomographen.

Die nächste große Herausforderung besteht darin, diesen Sensor zur Aufnahme von dreidimensiona-len Kernspin-Bildern einzusetzen. In beiden jetzt veröffentlichten Studien war das verwendete Farb-zentrum fest in das Diamantgitter eingebaut. Das Magnetfeld der Beschichtung ließ sich damit zwar nachweisen, nicht aber abbilden. Das gemessene Signal entspricht gewissermaßen einem einzigen Pixel eines Kernspin-Bildes. Um ein komplettes Bild aufzunehmen, müsste beispielsweise ein Nano-Diamant mit einem einzelnen Farbzentrum als Sensor in ein Rastersondenmikroskop eingebaut wer-den. Alternativ könnten, wie in klinischen Tomographen, Magnetfeldgradienten das Bild im Signal der Kerne codieren. Beide Schritte scheinen machbar und lassen es realistisch erscheinen, in naher Zu-kunft dreidimensionale Bilder einzelner Moleküle aufzunehmen.

Dieses Ziel wird in zahlreichen Labors auf der ganzen Welt mit großem Aufwand verfolgt. Mit welchem Hochdruck das geschieht lässt sich auch daran ablesen, dass der jetzige Durchbruch zeitgleich in zwei Arbeitsgruppen gelungen ist. Das Rennen um den nächsten großen Schritt ist mit der jetzigen Veröffentlichung bereits eröffnet.

*) Originalpublikation:
Tobias Staudacher, Fazhan Shi, Sébastien Pezzagna, Jan Meijer, Jiangfeng Du, Carlos A. Meriles, Friedemann Reinhard, Jörg Wrachtrup: Nuclear magnetic resonance spectroscopy on a (5nm)3 sam-ple volume, doi:10.1126/science.1231675
Weitere Informationen:
Dr. Friedemann Reinhard, Universität Stuttgart,3. Physikalisches Institut, , Tel. 0711/685-65228, E-Mail: f.reinhard (at) physik.uni-stuttgart.de

Andrea Mayer-Grenu, Universität Stuttgart, Abt. Hochschulkommunikation, Tel. 0711/685-82176, E-Mail: andrea.mayer-grenu (at) hkom.uni-stuttgart.de

Andrea Mayer-Grenu | idw
Weitere Informationen:
http://www.uni-stuttgart.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Durchbruch mit einer Kette aus Goldatomen
17.02.2017 | Universität Konstanz

nachricht Zukunftsmusik: Neues Funktionsprinzip zur Erzeugung der „Dritten Harmonischen“
17.02.2017 | Laser Zentrum Hannover e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovative Antikörper für die Tumortherapie

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig von diesen teuren Medikamenten profitieren, wird intensiv an deren Verbesserung gearbeitet. Forschern um Prof. Thomas Valerius an der Christian Albrechts Universität Kiel gelang es nun, innovative Antikörper mit verbesserter Wirkung zu entwickeln.

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig...

Im Focus: Durchbruch mit einer Kette aus Goldatomen

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des Wärmetransportes

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: Hoch wirksamer Malaria-Impfstoff erfolgreich getestet

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Im Focus: Sensoren mit Adlerblick

Stuttgarter Forscher stellen extrem leistungsfähiges Linsensystem her

Adleraugen sind extrem scharf und sehen sowohl nach vorne, als auch zur Seite gut – Eigenschaften, die man auch beim autonomen Fahren gerne hätte. Physiker der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Welt der keramischen Werkstoffe - 4. März 2017

20.02.2017 | Veranstaltungen

Schwerstverletzungen verstehen und heilen

20.02.2017 | Veranstaltungen

ANIM in Wien mit 1.330 Teilnehmern gestartet

17.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Innovative Antikörper für die Tumortherapie

20.02.2017 | Medizin Gesundheit

Multikristalline Siliciumsolarzelle mit 21,9 % Wirkungsgrad – Weltrekord zurück am Fraunhofer ISE

20.02.2017 | Energie und Elektrotechnik

Wie Viren ihren Lebenszyklus mit begrenzten Mitteln effektiv sicherstellen

20.02.2017 | Biowissenschaften Chemie