Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

DFG-Forschergruppe zur Berechnung korrelierter Materialien erfolgreich abgeschlossen

25.10.2017

Über sieben Jahre hinweg arbeiteten Physikerinnen und Physiker an 17 Forschungsinstituten im deutschsprachigen Raum an der Entwicklung theoretischer Methoden zur Berechnung und Vorhersage der Eigenschaften elektronisch korrelierter Materialien.

Nach zwei außerordentlich erfolgreichen Förderperioden hat die ortsverteilte Forschergruppe FOR 1346 "Dynamical mean-field approach with predictive power for strongly correlated materials" ihre wissenschaftliche Arbeit beendet. Die von dem Augsburger Physiker Prof. Dr. Dieter Vollhardt geleitete Forschergruppe wurde von der Deutschen Forschungsgemeinschaft (DFG) von Juli 2010 bis August 2017 mit ca. fünf Millionen EUR gefördert.


Die Entwicklung theoretischer Methoden zur Berechnung und Vorhersage der Eigenschaften elektronisch korrelierter Materialien war Ziel der ortsverteilten Forschergruppe FOR 1346.

© Universität Augsburg/IfP


Prof. Dr. Dieter Vollhardt, Inhaber des Augsburger Lehrstuhls für Theoretische Physik III, war Initiator und Sprecher der Forschergruppe FOR 1346, die ihre Arbeit nach 7 Jahren nun abgeschlossen hat.

© Klaus Satzinger-Viel

Ziel der Forschergruppe, an der sich während der zweiten Förderperiode (2013–2017) 29 Teilprojektleiterinnen und Teilprojektleiter an 17 Forschungsinstituten in Deutschland, Österreich und der Schweiz beteiligten, war die interdisziplinäre Entwicklung eines neuen theoretischen Zugangs zur Berechnung und Vorhersage der Eigenschaften komplexer, elektronisch korrelierter Festkörper.

Was waren die Fragestellungen?

In vielen Materialien, von denen die Metalle Eisen, Kobalt und Nickel die bekanntesten sind, und ihren Verbindungen wechselwirken die quantenmechanischen Ladungsträger – die Elektronen – stark miteinander. Derart "korrelierte" Systeme zeigen häufig ungewöhnliche Eigenschaften. Bereits geringe Veränderungen äußerer Parameter wie der Temperatur oder des Druckes können z. B. zu komplexem magnetischen Verhalten, riesigen Widerstandsänderungen oder unkonventioneller Supraleitfähigkeit führen.

Dieses Thema ist nicht nur für die physikalische Grundlagenforschung, sondern auch für technologische Entwicklungen und ihre Anwendungen von größtem Interesse: Materialien mit korrelierten Elektronen spielen u. a. für den Bau von Sensoren und Schaltern oder für die Entwicklung neuartiger elektronischer Bauelemente eine große Rolle. Sie sind Gegenstand intensiver Forschung am "Zentrum für Elektronische Korrelationen und Magnetismus" (EKM) des Instituts für Physik der Universität Augsburg sowie an dem 2010 eingerichteten Augsburg/München-Transregio 80 der DFG "From electronic correlations to functionality", dessen Verlängerungsantrag erst vor wenigen Wochen hervorragend bewertet wurde.

Auf die theoretischen Methoden kommt es an

Die Berücksichtigung der Wechselwirkung zwischen den Elektronen in korrelierten Materialien erweist sich als große theoretische Herausforderung. Hier hat die Entwicklung einer neuen theoretischen Methode, der sogenannten "Dynamischen Molekularfeld-Theorie" (DMFT), zu einem Durchbruch geführt. Die Grundlagen der DMFT wurden vor über 25 Jahren von Vollhardt, dem Augsburger Sprecher der nun beendeten DFG-Forschergruppe, und seinem damaligen Doktoranden Walter Metzner - jetzt Direktor am MPI für Festkörperforschung in Stuttgart - gelegt. Insbesondere hat die Verbindung der DMFT mit herkömmlichen Methoden zur Berechnung elektronischer Eigenschaften von Festkörpern während der letzten zwanzig Jahre zu ganz neuen Möglichkeiten für die realistische Modellierung korrelierter Materialien geführt.

Trotzdem ist die Berechnung komplexer, elektronisch korrelierter Materialien immer noch extrem schwierig. Mit der Gründung der DFG-Forschergruppe FOR 1346 gelang es Vollhardt und seinen Kolleginnen und Kollegen, den weltweit ersten koordinierten Forschungsverbund auf diesem international bearbeiteten Gebiet der Festkörperphysik zu gründen. Durch die koordinierte Kooperation aller einschlägig aktiven Forschergruppen im deutschsprachigen Teil Europas gelang es der Forschergruppe, eine führende Rolle in der weltweiten Entwicklung dieses neuen Zugangs zu spielen. Dabei sollte letztlich ein neuer Standard in der rechnergestützten Untersuchung korrelierter Festkörper erreicht werden, der es ermöglicht, die Eigenschaften komplexer korrelierter Materialien – bis hin zu Phänomenen in organischer Materie - zu berechnen und sogar vorherzusagen.

Strenge Begutachtung durch die DFG

Nach einem sehr positiv bewerteten Vorantrag an die DFG wurden die beteiligten Wissenschaftlerinnen und Wissenschaftler Mitte 2009 aufgefordert, einen Vollantrag zu stellen. Dieser wurde im April 2010 an der Universität Augsburg durch ein internationales Fachgremium begutachtet und mit Bestnoten bewertet. Die DFG bewilligte daraufhin Mittel in Höhe von ca. 2,4 Millionen EUR für drei Jahre (2010–2013). Aufgrund des ebenfalls hervorragend bewerteten Verlängerungsantrags bewilligte die DFG im Jahr 2013 weitere 2.6 Millionen EUR. Damit konnte sich die Forschergruppe sogar noch vergrößern.

Die Bearbeitung des enorm anspruchsvollen Forschungsthemas wurde erst durch eine enge Zusammenarbeit von Experten unterschiedlichster Fachgebiete möglich. Sie führte zu einer Kooperation von Experten für die Berechnung elektronischer Eigenschaften von Festkörpern mit Spezialisten für quantenmechanische Vielteilchenzugänge, für numerische Verfahren zur Lösung korrelierter Vielteilchensysteme und für numerische Optimierung.

International sichtbar

Die Forschergruppe FOR 1346 erreichte eine außergewöhnlich hohe internationale Sichtbarkeit. Zusammen mit ihren assoziierten Partnern aus den USA, Japan, Russland, Frankreich und den Niederlanden und den 37 internationalen Arbeitsgruppen mit denen sie zusammenarbeitete, repräsentierte FOR 1346 praktisch die gesamte Community, die weltweit auf diesem Gebiet arbeitet. Die Sichtbarkeit wurde durch die Organisation von vier Konferenzen mit internationalen Sprecherinnen und Sprechern weiter erhöht. Die Forschergruppe hat inzwischen zur Gründung einer ähnlichen Kollaboration in den USA geführt und dabei als Vorbild gedient.

Umfangreiche Ergebnisse

Exemplarisch für die Leistungen der Forschergruppe FOR 1346 stehen:
• rund 250 Veröffentlichungen in referierten, internationalen wissenschaftlichen Zeitschriften, davon 38 in Journalen mit „high-impact“;
• zwei internationale Workshops am Max-Planck-Institut für Chemische Physik fester Stoffe in den Jahren 2012 und 2015;
• zwei Symposien während der Frühjahrstagungen 2013 und 2016 der Deutschen Physikalischen Gesellschaft;
• zwei Herbstschulen am Forschungszentrum Jülich in den Jahren 2011 und 2014;
• die Veröffentlichung der herausragendsten Ergebnisse in einem Sonderband der Zeitschrift European Physical Journal - Special Topics im Juli 2017 (open access: http://link.springer.com/journal/11734/226/11/).


FOR 1346-Homepage:
http://www.physik.uni-augsburg.de/for1346


Ansprechpartner:
Prof. Dr. Dieter Vollhardt
Lehrstuhl für Theoretische Physik III/EKM
Institut für Physik der Universität Augsburg
86135 Augsburg
Telefon +49(0)821-598-3700
dieter.vollhardt@physik.uni-augsburg.de

Weitere Informationen:

http://www.physik.uni-augsburg.de/for1346

Klaus P. Prem | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: DFG DFG-Forschergruppe DMFT Elektronen FOR Festkörper Magnetismus

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Berner Mars-Kamera liefert erste farbige Bilder vom Mars
26.04.2018 | Universität Bern

nachricht Belle II misst die ersten Teilchenkollisionen
26.04.2018 | Max-Planck-Institut für Physik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

Das Kleben der Zellverbinder von Hocheffizienz-Solarzellen im industriellen Maßstab ist laut dem Fraunhofer-Institut für Solare Energiesysteme ISE und dem Anlagenhersteller teamtechnik marktreif. Als Ergebnis des gemeinsamen Forschungsprojekts »KleVer« ist die Klebetechnologie inzwischen so weit ausgereift, dass sie als alternative Verschaltungstechnologie zum weit verbreiteten Weichlöten angewendet werden kann. Durch die im Vergleich zum Löten wesentlich niedrigeren Prozesstemperaturen können vor allem temperatursensitive Hocheffizienzzellen schonend und materialsparend verschaltet werden.

Dabei ist der Durchsatz in der industriellen Produktion nur geringfügig niedriger als beim Verlöten der Zellen. Die Zuverlässigkeit der Klebeverbindung wurde...

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Konferenz »Encoding Cultures. Leben mit intelligenten Maschinen« | 27. & 28.04.2018 ZKM | Karlsruhe

26.04.2018 | Veranstaltungen

Konferenz zur Marktentwicklung von Gigabitnetzen in Deutschland

26.04.2018 | Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Weltrekord an der Uni Paderborn: Optische Datenübertragung mit 128 Gigabits pro Sekunde

26.04.2018 | Informationstechnologie

Multifunktionaler Mikroschwimmer transportiert Fracht und zerstört sich selbst

26.04.2018 | Biowissenschaften Chemie

Berner Mars-Kamera liefert erste farbige Bilder vom Mars

26.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics