Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Detaillierte Struktur eines weit entfernten Quasars

01.06.2010
Erstes hochaufgelöstes Bild mit dem Niederfrequenz-Radioteleskop LOFAR

Das Max-Planck-Institut für Radioastronomie (Bonn) und das Max-Planck-Institut für Astrophysik (Garching) betreiben beide eine Station des europäischen LOFAR-Teleskops, das vom niederländischen Institut für Radioastronomie, ASTRON, koordiniert wird.

Durch die erstmalige Zusammenschaltung von drei deutschen LOFAR-Station mit den zentralen Stationen bei Exloo in den Niederlanden ist es einer internationalen Gruppe von Wissenschaftlern unter der Leitung von Olaf Wucknitz vom Argelander-Institut für Astronomie (AIfA) der Universität Bonn nun gelungen, das erste hochaufgelöste Bild eines weit entfernten Quasars bei Radiowellen im Meter-Bereich zu erhalten. Dieser Wellenlängenbereich war bisher für derart detailgenaue Messungen nicht zugänglich, da dafür Radioteleskope in großem gegenseitigen Abstand miteinander vernetzt werden müssen. Das erste Bild der detaillierten Struktur des Quasars 3C 196 zwischen 4 und 10 m Wellenlänge konnte bereits mit einem kleinen Teil der Stationen des kompletten LOFAR-Netzwerks erzielt werden; später wird es sich über einen ausgedehnten Bereich Europas erstrecken.

Nach Testmessungen mit einzelnen LOFAR-Antennen konnten erstmals acht Stationen des "LOw Frequency ARrays" (LOFAR) für eine gemeinsame Messung zusammengeschaltet werden. Dazu wurden fünf LOFAR-Stationen in den Niederlanden mit drei Stationen in Deutschland vernetzt, und zwar Effelsberg bei Bonn, Tautenburg bei Jena und Unterweilenbach bei München. Alle Antennen wurden auf den Quasar 3C 196 ausgerichtet, eine starke Radioquelle in einer Entfernung von mehreren Milliarden Lichtjahren. "Wir haben dieses Objekt für unsere ersten Testmessungen ausgewählt, weil wir seine Struktur aus hochaufgelösten Beobachtungen bei kürzeren Wellenlängen schon ganz gut kennen", sagt Olaf Wucknitz (AIfA). "Das Ziel dabei war zunächst nicht, etwas Neues zu finden, sondern die gleichen oder zumindest ähnliche Strukturen auch bei sehr langen Wellenlängen zu identifizieren, um zu bestätigen, dass das neue Instrument exzellent arbeitet. Ohne die deutschen Stationen sehen wir nur einen verschwommenen Fleck ohne jegliche Substrukturen. Sobald wir aber die langen Basislinien dazufügen, eröffnen sich alle Details."

Radiobeobachtungen des Himmels in dem von LOFAR abgedeckten Wellenlängenbereich sind nicht gänzlich neu. Tatsächlich haben die Pioniere der Radioastronomie in den 1930er Jahren genau in diesem Bereich angefangen. Sie waren jedoch nur in der Lage, ziemlich grobe Himmelskarten zu erstellen und Positionen sowie Strahlungsintensitäten einzelner Objekte festzulegen. "Wir kehren jetzt zu einem lange vernachlässigten Wellenlängenbereich zurück", sagt Michael Garrett, Generaldirektor des Forschungsinstituts ASTRON (Niederlande), das für das internationale LOFAR-Projekt verantwortlich zeichnet. "Aber jetzt sind wir in der Lage, viel schwächere Objekte nachzuweisen und, was noch wichtiger ist, feine Details aufzulösen. Das eröffnet eine Reihe von neuen Möglichkeiten für die Forschung."

"Die hohe Auflösung und große Empfindlichkeit von LOFAR bedeuten, dass wir wirklich Neuland betreten; die Analyse der Daten war auch entsprechend aufwendig", fügt Olaf Wucknitz hinzu. "Wir mussten dazu eine Reihe völlig neuer Analysetechniken entwickeln. Trotzdem ist die Erstellung der Bilder bemerkenswert gut gelungen. Die Qualität der Daten ist erstaunlich." Der nächste Schritt für Wucknitz wird sein, LOFAR zur Untersuchung sogenannter Gravitationslinsen zu nutzen, bei denen das Licht weit entfernter Objekte durch große Massenansammlungen verzerrt wird. Eine hohe Auflösung ist erforderlich, um einzelne Strukturen zu unterscheiden. Das wäre ohne die internationalen LOFAR-Stationen nicht möglich.

Die Winkelauflösung eines Netzwerks von Radioteleskopen, d.h., die Ausdehnung der kleinsten Strukturen, die aufgelöst und voneinander unterschieden werden können, hängt direkt vom Abstand zwischen den einzelnen Teleskopen ab. Je größer die Basislinien in Bezug auf die beobachtete Wellenlänge der Strahlung, desto besser die erreichte Auflösung. Zur Zeit tragen die deutschen LOFAR-Stationen die ersten großen Basislinien zum gesamten Netzwerk bei und vergrößern die Auflösung um einen Faktor 10 gegenüber den niederländischen Stationen alleine.

"Wir möchten LOFAR dazu verwenden, nach Signalen aus der Frühzeit des Universums zu suchen", sagt Benedetta Ciardi vom Max-Planck-Institut für Astrophysik (MPA) in Garching. "Da ich selbst aus der theoretischen Astrophysik komme, hätte ich nie gedacht, dass ich mal ein Radiobild so aufregend finden könnte. Aber die neuen Ergebnisse sind schon faszinierend."

Eine weitere Verbesserung sollte schon bald durch Beobachtungen bei etwas kürzeren Wellenlängen erreicht werden, durch die die Auflösung nochmals um einen Faktor 4 gesteigert werden kann. Dazu wird sich die Qualität der Abbildungen durch die Hinzunahme weiterer LOFAR-Stationen deutlich verbessern. Das Bild des Quasars 3C 196 ist nur ein erster, wenn auch wichtiger Schritt.

"Die Bildqualität des fertigen Netzwerks wird sehr stark von der Gleichmäßigkeit abhängen, mit der große Gebiete Europas mit einzelnen LOFAR-Stationen überdeckt werden können", sagt Anton Zensus, Direktor am Max-Planck-Institut für Radioastronomie (MPIfR), der Leiter der VLBI-Forschungsgruppe am Institut. "Die deutschen Stationen bilden bereits einen unschätzbaren Beitrag zu dem internationalen Netzwerk. Was wir aber noch gut brauchen könntne, wäre eine Station in Norddeutschland, mit der wir die Lücke zwischen unseren jetzigen Stationen und denen unserer holländischen Freunde schließen könnten. Das würde die Bildqualität nochmals erheblich verbessern."

Bemerkungen:

Das "International LOFAR telescope" (ILT) wurde hauptsächlich von ASTRON konzipiert, dem Niederländischen Institut für Radioastronomie, in Zusammenarbeit mit einer Reihe von internationalen Partnern. Die LOFAR-Station in Effelsberg wird vom MPIfR betrieben, die Station in Unterweilenbach vom MPA und diejeninge in Tautenburg von der Landessternwarte Tautenburg. Die deutschen LOFAR-Partner haben sich zu dem GLOW, dem "German LOng Wavelength" Konsortium zusammengeschlossen.

In seiner endgültigen Form wird sich das internationale LOFAR-Teleskop aus mindestens 36 Einzelstationen in den Niederlanden und acht Stationen in Deutschland, Frankreich, Großbritannien und Schweden zusammensetzen. Zur Zeit sind 22 Stationen in Betrieb und weitere im Bau, in Bornim bei Potsdam, in Chilbolton (UK), Onsala (Sweden) und Nançay (France). Jede Station besteht aus Hunderten von Dipolantennen, die elektronisch miteinander verbunden ein riesiges Radioteleskop bilden, mit der Fläche von halb Europa. Durch die neuartige Technik von LOFAR ist es nicht mehr erforderlich, die Radioantennen auf die jeweils interessierenden Objekte auszurichten. Statt dessen ist es sogar möglich, unterschiedliche Gebiete des Himmels gleichzeitig zu erfassen.

Die Beobachtungsdaten von allen LOFAR-Stationen werden über schnelle Glasfaserleitungen der Wissenschaftsnetzwerke in ein Computerzentrum in Groningen im Norden der Niederlande übertragen. Dort werden sie in einem Supercomputer (IBM BlueGene) verarbeitet und für die endgültige Auswertung vorbereitet, die entweder dort oder in einem der beteiligten Institute (in diesem Fall im Argelander-Institut für Astronomie in Bonn) stattfinden kann.

Zusätzliche Informationen:

Argelander-Institut für Astronomie (AIfA), Bonn.
http://www.astro.uni-bonn.de/german/index.php
Max-Planck-Institut für Radioastronomie. (MPIfR), Bonn.
http://www.mpifr-bonn.mpg.de/
German LOng Wavelength (GLOW).
http://www.mpifr-bonn.mpg.de/div/lofar/glow.html
Netherlands Institute for Radio Astronomy (ASTRON).
http://www.astron.nl/
LOw Frequency ARray (LOFAR), Internationale Web-Seite.
http://www.lofar.org/
LOFAR am MPA
http://lofar.mpa-garching.mpg.de/
Contact
Dr. Hannelore Hämmerle
Press Officer
Max Planck Institute for Astrophysics
and Max Planck Institute for extraterrestrial Physics
Phone: +49 89 30000-3980
E-Mail: hhaemmerle@mpa-garching.mpg.de

Dr. Benedetta Ciardi
Max Planck Institute for Astrophysics
Phone: +49 89 30000-2018
E-Mail: ciardi@mpa-garching.mpg.de

Dr. Hannelore Hämmerle | Max Planck Institute for Astroph
Weitere Informationen:
http://www.mpa-garching.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise