Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Detaillierte Struktur eines weit entfernten Quasars

01.06.2010
Erstes hochaufgelöstes Bild mit dem Niederfrequenz-Radioteleskop LOFAR

Das Max-Planck-Institut für Radioastronomie (Bonn) und das Max-Planck-Institut für Astrophysik (Garching) betreiben beide eine Station des europäischen LOFAR-Teleskops, das vom niederländischen Institut für Radioastronomie, ASTRON, koordiniert wird.

Durch die erstmalige Zusammenschaltung von drei deutschen LOFAR-Station mit den zentralen Stationen bei Exloo in den Niederlanden ist es einer internationalen Gruppe von Wissenschaftlern unter der Leitung von Olaf Wucknitz vom Argelander-Institut für Astronomie (AIfA) der Universität Bonn nun gelungen, das erste hochaufgelöste Bild eines weit entfernten Quasars bei Radiowellen im Meter-Bereich zu erhalten. Dieser Wellenlängenbereich war bisher für derart detailgenaue Messungen nicht zugänglich, da dafür Radioteleskope in großem gegenseitigen Abstand miteinander vernetzt werden müssen. Das erste Bild der detaillierten Struktur des Quasars 3C 196 zwischen 4 und 10 m Wellenlänge konnte bereits mit einem kleinen Teil der Stationen des kompletten LOFAR-Netzwerks erzielt werden; später wird es sich über einen ausgedehnten Bereich Europas erstrecken.

Nach Testmessungen mit einzelnen LOFAR-Antennen konnten erstmals acht Stationen des "LOw Frequency ARrays" (LOFAR) für eine gemeinsame Messung zusammengeschaltet werden. Dazu wurden fünf LOFAR-Stationen in den Niederlanden mit drei Stationen in Deutschland vernetzt, und zwar Effelsberg bei Bonn, Tautenburg bei Jena und Unterweilenbach bei München. Alle Antennen wurden auf den Quasar 3C 196 ausgerichtet, eine starke Radioquelle in einer Entfernung von mehreren Milliarden Lichtjahren. "Wir haben dieses Objekt für unsere ersten Testmessungen ausgewählt, weil wir seine Struktur aus hochaufgelösten Beobachtungen bei kürzeren Wellenlängen schon ganz gut kennen", sagt Olaf Wucknitz (AIfA). "Das Ziel dabei war zunächst nicht, etwas Neues zu finden, sondern die gleichen oder zumindest ähnliche Strukturen auch bei sehr langen Wellenlängen zu identifizieren, um zu bestätigen, dass das neue Instrument exzellent arbeitet. Ohne die deutschen Stationen sehen wir nur einen verschwommenen Fleck ohne jegliche Substrukturen. Sobald wir aber die langen Basislinien dazufügen, eröffnen sich alle Details."

Radiobeobachtungen des Himmels in dem von LOFAR abgedeckten Wellenlängenbereich sind nicht gänzlich neu. Tatsächlich haben die Pioniere der Radioastronomie in den 1930er Jahren genau in diesem Bereich angefangen. Sie waren jedoch nur in der Lage, ziemlich grobe Himmelskarten zu erstellen und Positionen sowie Strahlungsintensitäten einzelner Objekte festzulegen. "Wir kehren jetzt zu einem lange vernachlässigten Wellenlängenbereich zurück", sagt Michael Garrett, Generaldirektor des Forschungsinstituts ASTRON (Niederlande), das für das internationale LOFAR-Projekt verantwortlich zeichnet. "Aber jetzt sind wir in der Lage, viel schwächere Objekte nachzuweisen und, was noch wichtiger ist, feine Details aufzulösen. Das eröffnet eine Reihe von neuen Möglichkeiten für die Forschung."

"Die hohe Auflösung und große Empfindlichkeit von LOFAR bedeuten, dass wir wirklich Neuland betreten; die Analyse der Daten war auch entsprechend aufwendig", fügt Olaf Wucknitz hinzu. "Wir mussten dazu eine Reihe völlig neuer Analysetechniken entwickeln. Trotzdem ist die Erstellung der Bilder bemerkenswert gut gelungen. Die Qualität der Daten ist erstaunlich." Der nächste Schritt für Wucknitz wird sein, LOFAR zur Untersuchung sogenannter Gravitationslinsen zu nutzen, bei denen das Licht weit entfernter Objekte durch große Massenansammlungen verzerrt wird. Eine hohe Auflösung ist erforderlich, um einzelne Strukturen zu unterscheiden. Das wäre ohne die internationalen LOFAR-Stationen nicht möglich.

Die Winkelauflösung eines Netzwerks von Radioteleskopen, d.h., die Ausdehnung der kleinsten Strukturen, die aufgelöst und voneinander unterschieden werden können, hängt direkt vom Abstand zwischen den einzelnen Teleskopen ab. Je größer die Basislinien in Bezug auf die beobachtete Wellenlänge der Strahlung, desto besser die erreichte Auflösung. Zur Zeit tragen die deutschen LOFAR-Stationen die ersten großen Basislinien zum gesamten Netzwerk bei und vergrößern die Auflösung um einen Faktor 10 gegenüber den niederländischen Stationen alleine.

"Wir möchten LOFAR dazu verwenden, nach Signalen aus der Frühzeit des Universums zu suchen", sagt Benedetta Ciardi vom Max-Planck-Institut für Astrophysik (MPA) in Garching. "Da ich selbst aus der theoretischen Astrophysik komme, hätte ich nie gedacht, dass ich mal ein Radiobild so aufregend finden könnte. Aber die neuen Ergebnisse sind schon faszinierend."

Eine weitere Verbesserung sollte schon bald durch Beobachtungen bei etwas kürzeren Wellenlängen erreicht werden, durch die die Auflösung nochmals um einen Faktor 4 gesteigert werden kann. Dazu wird sich die Qualität der Abbildungen durch die Hinzunahme weiterer LOFAR-Stationen deutlich verbessern. Das Bild des Quasars 3C 196 ist nur ein erster, wenn auch wichtiger Schritt.

"Die Bildqualität des fertigen Netzwerks wird sehr stark von der Gleichmäßigkeit abhängen, mit der große Gebiete Europas mit einzelnen LOFAR-Stationen überdeckt werden können", sagt Anton Zensus, Direktor am Max-Planck-Institut für Radioastronomie (MPIfR), der Leiter der VLBI-Forschungsgruppe am Institut. "Die deutschen Stationen bilden bereits einen unschätzbaren Beitrag zu dem internationalen Netzwerk. Was wir aber noch gut brauchen könntne, wäre eine Station in Norddeutschland, mit der wir die Lücke zwischen unseren jetzigen Stationen und denen unserer holländischen Freunde schließen könnten. Das würde die Bildqualität nochmals erheblich verbessern."

Bemerkungen:

Das "International LOFAR telescope" (ILT) wurde hauptsächlich von ASTRON konzipiert, dem Niederländischen Institut für Radioastronomie, in Zusammenarbeit mit einer Reihe von internationalen Partnern. Die LOFAR-Station in Effelsberg wird vom MPIfR betrieben, die Station in Unterweilenbach vom MPA und diejeninge in Tautenburg von der Landessternwarte Tautenburg. Die deutschen LOFAR-Partner haben sich zu dem GLOW, dem "German LOng Wavelength" Konsortium zusammengeschlossen.

In seiner endgültigen Form wird sich das internationale LOFAR-Teleskop aus mindestens 36 Einzelstationen in den Niederlanden und acht Stationen in Deutschland, Frankreich, Großbritannien und Schweden zusammensetzen. Zur Zeit sind 22 Stationen in Betrieb und weitere im Bau, in Bornim bei Potsdam, in Chilbolton (UK), Onsala (Sweden) und Nançay (France). Jede Station besteht aus Hunderten von Dipolantennen, die elektronisch miteinander verbunden ein riesiges Radioteleskop bilden, mit der Fläche von halb Europa. Durch die neuartige Technik von LOFAR ist es nicht mehr erforderlich, die Radioantennen auf die jeweils interessierenden Objekte auszurichten. Statt dessen ist es sogar möglich, unterschiedliche Gebiete des Himmels gleichzeitig zu erfassen.

Die Beobachtungsdaten von allen LOFAR-Stationen werden über schnelle Glasfaserleitungen der Wissenschaftsnetzwerke in ein Computerzentrum in Groningen im Norden der Niederlande übertragen. Dort werden sie in einem Supercomputer (IBM BlueGene) verarbeitet und für die endgültige Auswertung vorbereitet, die entweder dort oder in einem der beteiligten Institute (in diesem Fall im Argelander-Institut für Astronomie in Bonn) stattfinden kann.

Zusätzliche Informationen:

Argelander-Institut für Astronomie (AIfA), Bonn.
http://www.astro.uni-bonn.de/german/index.php
Max-Planck-Institut für Radioastronomie. (MPIfR), Bonn.
http://www.mpifr-bonn.mpg.de/
German LOng Wavelength (GLOW).
http://www.mpifr-bonn.mpg.de/div/lofar/glow.html
Netherlands Institute for Radio Astronomy (ASTRON).
http://www.astron.nl/
LOw Frequency ARray (LOFAR), Internationale Web-Seite.
http://www.lofar.org/
LOFAR am MPA
http://lofar.mpa-garching.mpg.de/
Contact
Dr. Hannelore Hämmerle
Press Officer
Max Planck Institute for Astrophysics
and Max Planck Institute for extraterrestrial Physics
Phone: +49 89 30000-3980
E-Mail: hhaemmerle@mpa-garching.mpg.de

Dr. Benedetta Ciardi
Max Planck Institute for Astrophysics
Phone: +49 89 30000-2018
E-Mail: ciardi@mpa-garching.mpg.de

Dr. Hannelore Hämmerle | Max Planck Institute for Astroph
Weitere Informationen:
http://www.mpa-garching.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Eine Extra-Sekunde zum neuen Jahr
08.12.2016 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Heimcomputer entdecken rekordverdächtiges Pulsar-Neutronenstern-System
08.12.2016 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops