Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Teilchenbeschleuniger im Miniformat

19.11.2015

Einen Teilchenbeschleuniger in der Größe einer Schuhschachtel zu bauen – das ist das Ziel eines Forscherteams unter Leitung der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) und der Stanford University zusammen mit acht weiteren internationalen Partnern. Die Gordon and Betty Moore Foundation fördert das Projekt in den kommenden fünf Jahren mit 13,5 Millionen Dollar (ca. 12,5 Mio. Euro); davon gehen 2,44 Millionen Dollar (ca. 2,26 Mio. Euro) an die FAU.

Teilchenbeschleuniger sind mehrere Kilometer lang und kosten viele Millionen Euro, große gar mehr als eine Milliarde Euro. Daher stehen Wissenschaftlern nur wenige Geräte zur Verfügung, die Zeit für Versuche ist streng und kurz getaktet. Mithilfe einer neuen Methode, „accelerator-on-a-chip“, auf Deutsch: Beschleuniger auf einem Mikrochip, genannt, könnten die Kosten und die Größe in Zukunft jedoch gesenkt werden – und die Wissenschaft an und mit ihnen dadurch drastisch verändert.


Ungefähr so groß wie eine 1-Cent-Münze: der Beschleuniger auf einem Mikrochip. Mithilfe dieser Technologie könnten Teilchenbeschleuniger in Zukunft in eine Schuhschachtel passen.

Bild: FAU/Joshua McNeur


Die Beschleuniger-Struktur im Größenvergleich mit einem einzelnen Haar.

Bild: FAU/Joshua McNeur

„Die Miniaturisierung der Beschleuniger kann man mit der Entwicklung von Computern vergleichen, die zunächst ganze Räume einnahmen und nun am Handgelenk getragen werden können. Durch diesen Ansatz werden wir hoffentlich in der Lage sein, Teilchenbeschleunigung für Forschungsbereiche und
-gruppen zugänglich zu machen, die vorher keinen Zugang zu dieser Technik hatten“, sagt Prof. Dr. Peter Hommelhoff vom Lehrstuhl für Laserphysik an der FAU, einer der beiden Projektleiter.

„Dieser Prototyp, der auf unserem revolutionärem Design basiert, könnte den Weg bereiten für eine neue Generation von Desktop-Beschleunigern, die zu unvorhergesehenen Entdeckungen in der Biologie und den Werkstoffwissenschaften sowie Anwendungen in der Medizin und der Röntgenbildgebung führt“, ergänzt der zweite Projektleiter Prof. Dr. Robert Byer von der Stanford University.

Der Beschleuniger auf dem Mikrochip

Die „accelerator-on-a-chip“-Methode, auf der das Projekt basiert, entstand durch Experimente der beiden Projektleiter: Hommelhoff und Byer haben unabhängig voneinander gezeigt, dass Laserstrahlen dazu genutzt werden können, Elektronen zu beschleunigen.

Hommelhoff und sein Team haben dazu in ihrem Experiment den Elektronenstrahl eines Elektronenmikroskops verwendet, den sie extrem nah an einer mikrostrukturieren Glasstruktur entlanggeschossen haben. Indem sie von der Seite durch die feine Glasstruktur hindurch kurze intensive Laserpulse auf die Elektronen fokussiert haben, konnten sie die Elektronen beschleunigen.

Byer und sein Team haben in einem sehr ähnlichen Experiment das Ganze mit viel energiereicheren Elektronen an einem Teilchenbeschleuniger gezeigt. Das Ergebnis: Die Elektronen wurden zehnmal schneller beschleunigt als in herkömmlichen Teilchenbeschleunigern. Zusammengenommen könnten die Ergebnisse, die gleichzeitig in Physical Review Letters (Hommelhoff) und Nature (Byer) im Jahr 2013 veröffentlicht wurden, einen kompakten Teilchenbeschleuniger ermöglichen.

Ein Mikrochip macht noch keinen Teilchenbeschleuniger

Zu zeigen, dass in einem Elektronenmikrochip Teilchen beschleunigt werden können, ist jedoch erst der Anfang. Auf die Wissenschaftler warten nun neue große Herausforderungen: Sie müssen unter anderem den Elektronenstrahl in seinem Durchmesser um ein 1.000-faches verkleinern.

Kein leichtes Unterfangen, wie Prof. Hommelhoff erklärt: „Dabei müssen wir folgendes beachten: Die Elektronen müssen auf einer schnurgeraden Linie gehalten werden. Sie lassen sich aber leicht in ihrer Richtung ablenken. Man kann sich Elektronen wie Murmeln vorstellen, die man entlang einer geraden Linie schieben will. Das ist mit einem langen Lineal sehr viel einfacher als wenn man es mit einem Textmarker versucht – vor allem, da die Elektronen sich immer auch untereinander abstoßen.“

Des Weiteren müssen die Forscher einen geeigneten Weg finden, die Elektronen zu erzeugen und vor allem auch präzise zu lenken. Dies bedeutet, dass nicht nur chipbasierte Beschleunigungselemente, sondern auch Ablenk- und Fokussierelemente in den neuen Beschleuniger eingebaut werden müssen – doch diese gibt es noch gar nicht.

Schließlich müssen die Wissenschaftler das optimale Design für die Mikrochips finden, damit sie aneinandergereiht einen echten Teilchenbeschleuniger ergeben, in dem die Teilchen auch nicht verloren gehen. Denn ein Beschleuniger-Mikrochip ist nur ein Puzzlestück des Vorhabens, einen funktionierenden Teilchenbeschleuniger zu bauen. Schlüssel zum Erfolg wird sein, mehrere Mikrochips mit unterschiedlichen Funktionen in eine Reihe zu schalten und damit die Elektronen zu hohen Energien zu beschleunigen, oder aber, und das ist der Traum der Forscher, alle Elemente direkt auf einem größeren Mikrochip herzustellen.

Ob der Teilchenbeschleuniger dann am Ende tatsächlich so kompakt ist wie eine Schuhschachtel oder gar so klein wie ein Streichholzschachtel oder aber doch groß wie ein Umzugskarton wird, ist dabei gar nicht so wichtig, sagt Hommelhoff: „Es geht vor allem darum, einen Prototypen zu bauen, der zeigt, dass Teilchenbeschleuniger viel kleiner gebaut werden können als bisher.“

In dem Projekt forschen weltweit renommierte Experten in Beschleunigerphysik, Laserphysik, Photonik, Nanotechnologie und Nanofabrikation zusammen. Neben der FAU und der Standford University sind an dem Projekt drei Forschungszentren beteiligt – das SLAC National Accelerator Laboratory in Menlo Park, USA, das Deutsche Elektronen-Synchroton (DESY) in Hamburg und das Paul Scherrer Institute in Villigen in der Schweiz – sowie eine Firma und weitere fünf Universitäten: die University of California Los Angeles, die Purdue University in Indiana, die Universität Hamburg, die Eidgenössische Technische Hochschule Lausanne und die Technische Universität Darmstadt.

Die Gordon und Betty Moore Foundation ist eine der weltweit größten privaten Stiftungen, die wissenschaftliche Forschungen und technische Entwicklungen fördert. In den vergangenen Jahren hat die Stiftung über eine Milliarde US-Dollar investiert. Weitere Informationen zu der Stiftung gibt es unter www.moore.org

Weitere Informationen:
Prof. Dr. Peter Hommelhoff
Tel.: 09131/85-27090
peter.hommelhoff@fau.de

Dr. Susanne Langer | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.fau.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie