Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Teilchenbeschleuniger im Miniformat

19.11.2015

Einen Teilchenbeschleuniger in der Größe einer Schuhschachtel zu bauen – das ist das Ziel eines Forscherteams unter Leitung der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) und der Stanford University zusammen mit acht weiteren internationalen Partnern. Die Gordon and Betty Moore Foundation fördert das Projekt in den kommenden fünf Jahren mit 13,5 Millionen Dollar (ca. 12,5 Mio. Euro); davon gehen 2,44 Millionen Dollar (ca. 2,26 Mio. Euro) an die FAU.

Teilchenbeschleuniger sind mehrere Kilometer lang und kosten viele Millionen Euro, große gar mehr als eine Milliarde Euro. Daher stehen Wissenschaftlern nur wenige Geräte zur Verfügung, die Zeit für Versuche ist streng und kurz getaktet. Mithilfe einer neuen Methode, „accelerator-on-a-chip“, auf Deutsch: Beschleuniger auf einem Mikrochip, genannt, könnten die Kosten und die Größe in Zukunft jedoch gesenkt werden – und die Wissenschaft an und mit ihnen dadurch drastisch verändert.


Ungefähr so groß wie eine 1-Cent-Münze: der Beschleuniger auf einem Mikrochip. Mithilfe dieser Technologie könnten Teilchenbeschleuniger in Zukunft in eine Schuhschachtel passen.

Bild: FAU/Joshua McNeur


Die Beschleuniger-Struktur im Größenvergleich mit einem einzelnen Haar.

Bild: FAU/Joshua McNeur

„Die Miniaturisierung der Beschleuniger kann man mit der Entwicklung von Computern vergleichen, die zunächst ganze Räume einnahmen und nun am Handgelenk getragen werden können. Durch diesen Ansatz werden wir hoffentlich in der Lage sein, Teilchenbeschleunigung für Forschungsbereiche und
-gruppen zugänglich zu machen, die vorher keinen Zugang zu dieser Technik hatten“, sagt Prof. Dr. Peter Hommelhoff vom Lehrstuhl für Laserphysik an der FAU, einer der beiden Projektleiter.

„Dieser Prototyp, der auf unserem revolutionärem Design basiert, könnte den Weg bereiten für eine neue Generation von Desktop-Beschleunigern, die zu unvorhergesehenen Entdeckungen in der Biologie und den Werkstoffwissenschaften sowie Anwendungen in der Medizin und der Röntgenbildgebung führt“, ergänzt der zweite Projektleiter Prof. Dr. Robert Byer von der Stanford University.

Der Beschleuniger auf dem Mikrochip

Die „accelerator-on-a-chip“-Methode, auf der das Projekt basiert, entstand durch Experimente der beiden Projektleiter: Hommelhoff und Byer haben unabhängig voneinander gezeigt, dass Laserstrahlen dazu genutzt werden können, Elektronen zu beschleunigen.

Hommelhoff und sein Team haben dazu in ihrem Experiment den Elektronenstrahl eines Elektronenmikroskops verwendet, den sie extrem nah an einer mikrostrukturieren Glasstruktur entlanggeschossen haben. Indem sie von der Seite durch die feine Glasstruktur hindurch kurze intensive Laserpulse auf die Elektronen fokussiert haben, konnten sie die Elektronen beschleunigen.

Byer und sein Team haben in einem sehr ähnlichen Experiment das Ganze mit viel energiereicheren Elektronen an einem Teilchenbeschleuniger gezeigt. Das Ergebnis: Die Elektronen wurden zehnmal schneller beschleunigt als in herkömmlichen Teilchenbeschleunigern. Zusammengenommen könnten die Ergebnisse, die gleichzeitig in Physical Review Letters (Hommelhoff) und Nature (Byer) im Jahr 2013 veröffentlicht wurden, einen kompakten Teilchenbeschleuniger ermöglichen.

Ein Mikrochip macht noch keinen Teilchenbeschleuniger

Zu zeigen, dass in einem Elektronenmikrochip Teilchen beschleunigt werden können, ist jedoch erst der Anfang. Auf die Wissenschaftler warten nun neue große Herausforderungen: Sie müssen unter anderem den Elektronenstrahl in seinem Durchmesser um ein 1.000-faches verkleinern.

Kein leichtes Unterfangen, wie Prof. Hommelhoff erklärt: „Dabei müssen wir folgendes beachten: Die Elektronen müssen auf einer schnurgeraden Linie gehalten werden. Sie lassen sich aber leicht in ihrer Richtung ablenken. Man kann sich Elektronen wie Murmeln vorstellen, die man entlang einer geraden Linie schieben will. Das ist mit einem langen Lineal sehr viel einfacher als wenn man es mit einem Textmarker versucht – vor allem, da die Elektronen sich immer auch untereinander abstoßen.“

Des Weiteren müssen die Forscher einen geeigneten Weg finden, die Elektronen zu erzeugen und vor allem auch präzise zu lenken. Dies bedeutet, dass nicht nur chipbasierte Beschleunigungselemente, sondern auch Ablenk- und Fokussierelemente in den neuen Beschleuniger eingebaut werden müssen – doch diese gibt es noch gar nicht.

Schließlich müssen die Wissenschaftler das optimale Design für die Mikrochips finden, damit sie aneinandergereiht einen echten Teilchenbeschleuniger ergeben, in dem die Teilchen auch nicht verloren gehen. Denn ein Beschleuniger-Mikrochip ist nur ein Puzzlestück des Vorhabens, einen funktionierenden Teilchenbeschleuniger zu bauen. Schlüssel zum Erfolg wird sein, mehrere Mikrochips mit unterschiedlichen Funktionen in eine Reihe zu schalten und damit die Elektronen zu hohen Energien zu beschleunigen, oder aber, und das ist der Traum der Forscher, alle Elemente direkt auf einem größeren Mikrochip herzustellen.

Ob der Teilchenbeschleuniger dann am Ende tatsächlich so kompakt ist wie eine Schuhschachtel oder gar so klein wie ein Streichholzschachtel oder aber doch groß wie ein Umzugskarton wird, ist dabei gar nicht so wichtig, sagt Hommelhoff: „Es geht vor allem darum, einen Prototypen zu bauen, der zeigt, dass Teilchenbeschleuniger viel kleiner gebaut werden können als bisher.“

In dem Projekt forschen weltweit renommierte Experten in Beschleunigerphysik, Laserphysik, Photonik, Nanotechnologie und Nanofabrikation zusammen. Neben der FAU und der Standford University sind an dem Projekt drei Forschungszentren beteiligt – das SLAC National Accelerator Laboratory in Menlo Park, USA, das Deutsche Elektronen-Synchroton (DESY) in Hamburg und das Paul Scherrer Institute in Villigen in der Schweiz – sowie eine Firma und weitere fünf Universitäten: die University of California Los Angeles, die Purdue University in Indiana, die Universität Hamburg, die Eidgenössische Technische Hochschule Lausanne und die Technische Universität Darmstadt.

Die Gordon und Betty Moore Foundation ist eine der weltweit größten privaten Stiftungen, die wissenschaftliche Forschungen und technische Entwicklungen fördert. In den vergangenen Jahren hat die Stiftung über eine Milliarde US-Dollar investiert. Weitere Informationen zu der Stiftung gibt es unter www.moore.org

Weitere Informationen:
Prof. Dr. Peter Hommelhoff
Tel.: 09131/85-27090
peter.hommelhoff@fau.de

Dr. Susanne Langer | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.fau.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung
21.02.2017 | Forschungszentrum Jülich

nachricht Sternenmusik aus fernen Galaxien
21.02.2017 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Im Focus: Innovative Antikörper für die Tumortherapie

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig von diesen teuren Medikamenten profitieren, wird intensiv an deren Verbesserung gearbeitet. Forschern um Prof. Thomas Valerius an der Christian Albrechts Universität Kiel gelang es nun, innovative Antikörper mit verbesserter Wirkung zu entwickeln.

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig...

Im Focus: Durchbruch mit einer Kette aus Goldatomen

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des Wärmetransportes

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: Hoch wirksamer Malaria-Impfstoff erfolgreich getestet

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Der Lkw der Zukunft kommt ohne Fahrer aus

21.02.2017 | Veranstaltungen

Physikerinnen und Physiker diskutieren in Bremen über aktuelle Grenzen der Physik

21.02.2017 | Veranstaltungen

Kniffe mit Wirkung in der Biotechnik

21.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit den Betriebsräten Sozialpläne

21.02.2017 | Unternehmensmeldung

Der Lkw der Zukunft kommt ohne Fahrer aus

21.02.2017 | Veranstaltungsnachrichten

Zur Sprache gebracht: Und das intelligente Haus „hört zu“

21.02.2017 | Messenachrichten