Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der leuchtende Halo eines Zombie-Sterns

11.11.2015

VLT kartiert Überreste der Mahlzeit eines Weißen Zwerges

Zum ersten Mal konnte ein internationales Astronomenteam mit dem Very Large Telescope am Paranal-Observatorium der ESO in Chile die Überbleibsel einer verhängnisvollen Begegnung zwischen einem toten Sterns und einem Asteroiden durch genau beobachten. Dies liefert einen Ausblick auf das Schicksal des Sonnensystems in ferner Zukunft.


Künstlerische Darstellung der leuchtenden Scheibe aus Materie um den Weißen Zwerg SDSS J1228+1040.

Illustration: Mark Garlick (www.markgarlick.com) und University of Warwick/ESO

Unter der Führung von Christopher Manser, einem Doktoranden der University of Warwick in Großbritannien, nutzten die Wissenschaftler Daten vom Very Large Telescope (VLT) der ESO und anderer Observatorien, um die zersplitterten Überbleibsel eines Asteroiden zu untersuchen, die die sterblichen Überreste eines Sterns umkreisen – eines Weißen Zwergs mit der Bezeichnung SDSS J1228+1040 [1].

Unter Zuhilfenahme verschiedener Instrumente einschließlich des Ultraviolet and Visual Echelle Spectrograph (UVES) und X-Shooter, die beide am VLT angebracht sind, gelangen dem Team detaillierte Untersuchungen des Lichts, das vom Weißen Zwerg und der ihn umgebenden Materie stammt, und das über einen noch nie da gewesenen Zeitraum von zwölf Jahren zwischen 2003 und 2015. Beobachtungen über eine Zeitspanne von mehreren Jahren waren notwendig, um das System unter mehreren Gesichtspunkten untersuchen zu können [2].

Das Bild, das wir aus den bearbeiteten Daten gewonnen haben, zeigt uns, dass das System wirklich scheibenartig geformt ist und viele Strukturen offenbart, die man nicht in einer einzigen Momentaufnahme nachweisen könnte“,erklärt Christopher Manser, der auch Erstautor des Fachartikels ist, in dem die Ergebnisse beschrieben werden.

Das Team nutzte ein technisches Verfahren, das als Doppler-Tomografie bezeichnet wird – und vom Prinzip her den tomografischen Aufnahmen in der Medizin ähnelt – das es ihnen erstmals ermöglichte, die Struktur der leuchtenden gasförmigen Überreste genau zu kartieren, die aus einer verhängnisvollen Begegnung mit J1228+1040 stammen und ihn umrunden.

Während sich große Sterne – solche, die etwa dem zehnfachen der Sonnenmasse entsprechen – am Ende ihres Lebens mit einer eindrucksvollen gewaltsamen Supernova-Explosion verabschieden, bleiben kleinere Sterne von solch einem dramatisches Schicksal verschont. Wenn sonnenähnliche Sterne das Ende ihres Lebens erreicht haben, brauchen sie ihren letzten Brennstoff auf, blähen sich zu einem Roten Riesen auf und schleudern später ihre äußeren Schichten in den Weltraum. Übrig bleibt nur der heiße und sehr dichte Kern des früheren Sterns – ein Weißer Zwerg.

Aber würden Planeten, Asteroiden und andere Körper in solch einem System diese Feuerprobe überleben? Was würde davon übrig bleiben? Dank der neuen Beobachtungen können solche Fragen leichter beantwortet werden.

Weiße Zwerge sind eher selten von Scheiben aus gasförmiger Materie umgeben – nur sieben dieser Art wurden je gefunden. Die Astronomen kamen zu dem Schluss, dass ein Asteroid dem toten Stern gefährlich nahe kam und durch die gewaltigen Gezeitenkräfte, denen er ausgesetzt war, auseinandergerissen wurde und die Materiescheibe bildete, die nun sichtbar ist.

Die den toten Stern umlaufende Scheibe bildete sich auf ähnliche Weise wie die leuchtenden Ringe, die um Planeten in unserer kosmischen Nachbarschaft beobachtet werden können, wie zum Beispiel beim Saturn. Obwohl J1228+1040 im Durchmesser sieben mal kleiner ist als der Ringplanet, ist seine Masse um das mehr als 2500-fache größer. Das Team fand heraus, dass sich die Entfernung zwischen dem Weißen Zwerg und seiner Scheibe ebenfalls unterscheidet – Saturn und seine Ringe würden locker in die Lücke dazwischen passen [3].

In der neuen Langzeitstudie mit dem VLT konnte das Team nun verfolgen, wie die Scheibe unter dem Einfluss des extrem starken Gravitationsfelds des Weißen Zwerges präzidiert. Sie fanden auch heraus, dass die Scheibe ein wenig schief und noch nicht kreisförmig ist.

Als wir 2006 diese Scheibe aus Trümmerteilen entdeckten, die den Weißen Zwerg umläuft, hätten wir uns die außerordentlich spannenden Details nicht vorstellen können, die nun nach zwölf Jahren sichtbar werden – es hat sich definitiv gelohnt zu warten“, fügt Boris Gänsicke hinzu, ein Koautor der Arbeit.

Stern-Überreste wie J1228+1040 können entscheidende Hinweise für das Verständnis darüber liefern, welche Umstände herrschen, wenn Sterne das Ende ihres Lebens erreichen. Dies kann Astronomen helfen, die Prozesse zu verstehen, die in einem exoplanetaren System stattfinden und sogar das Schicksal des Sonnensystems vorherzusagen, wenn die Sonne in etwa sieben Milliarden Jahren ihrem Untergang entgegenblickt.

Endnoten

[1] Die vollständige Bezeichnung des Weißen Zwergs lautet SDSS J122859.93+104032.9.

[2] Das Team identifizierte die eindeutige dreizackartige Spektrallinie von ionisiertem Kalzium, dem sogenannten Kalzium--Triplet (Ca II). Durch den Unterschied zwischen den beobachteten und theoretischen Wellenlängen dieser drei Linien kann die Geschwindigkeit des Gases mit beachtlicher Genauigkeit bestimmt werden.

[3] Obwohl die Scheibe um den Weißen Zwerg deutlich größer als das Ringsystem von Saturn ist, ist sie winzig verglichen mit der Scheibe aus Trümmerteilen, aus denen Planeten um einen jungen Stern entstehen.

Weitere Informationen

Die hier präsentierten Forschungsergebnisse von C. Manser et al. erscheinen demnächst unter dem Titel  „Doppler-imaging of the planetary debris disc at the white dwarf SDSS J122859.93+104032.9” in den Monthly Notices of the Royal Astronomical Society.

Die beteiligten Wissenschaftler sind Christopher Manser (University of Warwick, Großbritannien), Boris Gaensicke (University of Warwick), Tom Marsh (University of Warwick), Dimitri Veras (University of Warwick, Großbritannien), Detlev Koester (Universität Kiel), Elmé Breedt (University of Warwick), Anna Pala (University of Warwick), Steven Parsons (Universidad de Valparaiso, Chile) und John Southworth (Keele University).

Die Europäische Südsternwarte (engl. European Southern Observatory, kurz ESO) ist die führende europäische Organisation für astronomische Forschung und das wissenschaftlich produktivste Observatorium der Welt. Getragen wird die Organisation durch 16 Länder: Belgien, Brasilien, Dänemark, Deutschland, Finnland, Frankreich, Großbritannien, Italien, die Niederlande, Österreich, Polen, Portugal, Spanien, Schweden, die Schweiz und die Tschechische Republik. Die ESO ermöglicht astronomische Spitzenforschung, indem sie leistungsfähige bodengebundene Teleskope entwirft, konstruiert und betreibt. Auch bei der Förderung internationaler Zusammenarbeit auf dem Gebiet der Astronomie spielt die Organisation eine maßgebliche Rolle. Die ESO verfügt über drei weltweit einzigartige Beobachtungsstandorte in Chile: La Silla, Paranal und Chajnantor. Auf dem Paranal betreibt die ESO mit dem Very Large Telescope (VLT) das weltweit leistungsfähigste Observatorium für Beobachtungen im Bereich des sichtbaren Lichts und zwei Teleskope für Himmelsdurchmusterungen: VISTA, das größte Durchmusterungsteleskop der Welt, arbeitet im Infraroten, während das VLT Survey Telescope (VST) für Himmelsdurchmusterungen ausschließlich im sichtbaren Licht konzipiert ist. Die ESO ist einer der Hauptpartner bei ALMA, dem größten astronomischen Projekt überhaupt. Auf dem Cerro Armazones unweit des Paranal errichtet die ESO zur Zeit das European Extremely Large Telescope (E-ELT) mit 39 Metern Durchmesser, das einmal das größte optische Teleskop der Welt werden wird.

Die Übersetzungen von englischsprachigen ESO-Pressemitteilungen sind ein Service des ESO Science Outreach Network (ESON), eines internationalen Netzwerks für astronomische Öffentlichkeitsarbeit, in dem Wissenschaftler und Wissenschaftskommunikatoren aus allen ESO-Mitgliedsländern (und einigen weiteren Staaten) vertreten sind. Deutscher Knoten des Netzwerks ist das Haus der Astronomie in Heidelberg.

Links

Kontaktinformationen

Carolin Liefke
ESO Science Outreach Network - Haus der Astronomie
Heidelberg, Deutschland
Tel: 06221 528 226
E-Mail: eson-germany@eso.org

Christopher Manser
University of Warwick
United Kingdom
E-Mail: C.Manser@warwick.ac.uk

Boris Gänsicke
University of Warwick
United Kingdom
Tel: +44 (0)2476574741
E-Mail: Boris.Gaensicke@warwick.ac.uk

Tom Frew
International Press Officer, University of Warwick
United Kingdom
Tel: +44 (0)24 7657 5910
Mobil: +44 (0)7785 433 155
E-Mail: a.t.frew@warwick.ac.uk

Richard Hook
ESO Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
Mobil: +49 151 1537 3591
E-Mail: rhook@eso.org

Connect with ESO on social media

Dies ist eine Übersetzung der ESO-Pressemitteilung eso1544.

Dr. Carolin Liefke | ESO-Media-Newsletter
Weitere Informationen:
http://www.eso.org/public/germany/news/eso1544/?nolang

Weitere Berichte zu: Asteroiden Astronomie ESO SDSS Saturn Telescope VLT Very Large Telescope Zwerg

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Klein bestimmt über groß?
29.03.2017 | Max-Planck-Institut für Dynamik und Selbstorganisation

nachricht Quantenkommunikation: Wie man das Rauschen überlistet
29.03.2017 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten