Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Krebsnebel im Fokus – Vereinheitlichtes Modell für die gesamte Strahlung

05.09.2017

Wie erreicht die Natur, wofür am Large Hadron Collider (LHC) am CERN in Genf Tausende von Wissenschaftlern und viele Milliarden Euro erforderlich sind? Wie werden im Universum Atomkerne auf die Energie eines kräftig geschlagenen Tennisballs gebracht? Neue Forschungsergebnisse von Wissenschaftlern der Universitäten Potsdam und Arizona/USA liefern jetzt wichtige Hinweise darauf, wie der Erzeugungsprozess im Detail abläuft.

Wissenschaftler messen die Strahlung kosmischer Objekte in allen Bereichen, um Rückschlüsse auf die in diesen Objekten ablaufenden Prozesse zu erhalten.


Eines dieser kosmischen Objekte eignet sich besonders zur Untersuchung sehr energiereicher Elementarteilchen: der Krebsnebel, der Überrest einer im Jahre 1054 beobachteten Supernova.

Herkömmliche Modelle konnten die vom Krebsnebel beobachtete Strahlung allerdings nicht reproduzieren und man musste mehrere unabhängige Populationen energiereicher Teilchen annehmen.

Die neuesten Forschungen haben nun gezeigt, dass die Strahlung vom Krebsnebel doch mit einer einzigen Teilchenpopulation reproduzierbar ist.

Voraussetzung ist eine spezielle Eigenschaft der Population, die sich in der Helligkeitsverteilung des Krebsnebels über die Strahlungsbereiche von Radiowellen bis zur trilliardenfach energiereicheren Gammastrahlung äußert.

Sie ist eine direkte Folge des Wettbewerbs zwischen den mikroskopischen Prozessen, die letztlich zur Beschleunigung atomarer Teilchen auf sehr hohe Energien führen.

Eine Analyse der globalen Strahlung eines für uns unerreichbar weit entfernten Objekts liefert so wichtige neue Erkenntnisse über die Einzelprozesse der Teilchenbeschleunigung, die man jetzt auf andere Objekte übertragen kann, bei denen Messungen ähnlicher Güte nicht möglich sind.

„Das neue Ergebnis stellt einen wichtigen Fortschritt für unser Verständnis von Teilchenbeschleunigung in kosmischen Objekten dar und hilft, den Ursprung der energiereichen Teilchen zu entschlüsseln, die praktisch überall im Universum zu finden sind“, so Prof. Dr. Martin Pohl von der Universität Potsdam.

Kontakt: Prof. Dr. Martin Pohl, Telefon: 0331 977 5926
E-Mail: marpohl@uni-potsdam.de

Die neuen Ergebnisse sind hier erschienen:
https://academic.oup.com/mnras/article/doi/10.1093/mnras/stx1833/3980212/Particl...

Medieninformation 05-09-2017 / Nr. 137
Prof. Dr. Martin Pohl

Universität Potsdam
Referat Presse- und Öffentlichkeitsarbeit
Am Neuen Palais 10
14469 Potsdam
Tel.: +49 331 977-2964
Fax: +49 331 977-1130
E-Mail: presse@uni-potsdam.de

Internet: www.uni-potsdam.de/presse

Online gestellt: Katharina Zimmer
Kontakt zur Online-Redaktion: onlineredaktion@uni-potsdam.de

Edda Sattler | Universität Potsdam
Weitere Informationen:
http://www.uni-potsdam.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas
19.09.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern
15.09.2017 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik