Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Ionenstrahl als Nano-Schrotflinte

22.04.2014

Nanometergroße Löcher lassen sich mit Ionen in dünne Membranen schießen, allerdings verhalten sich die Ionen dabei anders als gedacht. Mit hochgeladenen Ionen lassen sich durchlöcherte Membranen herstellen, die als molekulares Sieb dienen.

Wenn man Gewehrkugeln durch eine Holzplatte schießt, werden sie abgebremst. Ähnlich ergeht es Ionen, die man auf dünne Folien feuert. Doch wenn man extrem dünne Folien verwendet, die nur aus wenigen Atomlagen bestehen, sieht die Sache anders aus. Das Verhalten der Ionen hängt dann davon ab, ob sie mit einem Atomkern der Folie heftig zusammenstoßen oder ob es ihnen gelingt, sich sanft zwischen den Kernen hindurch zu schummeln.


Elisabeth Gruber vor ihrer Ultrahochvakuumapparatur

TU Wien


Manche Ionen gelangen auf geradem Weg durch die Folie, andere erfahren heftigere Ablenkungen.

TU Wien

Durch die Verwendung hochgeladener Ionen wird es möglich, Nano-Folien gezielt zu bearbeiten – etwa indem man sie mit vielen kleinen Löchern versieht, sodass ein „molekulares Sieb“ entsteht. Durch die bloße Wucht des Ionen-Einschlags lässt sich das nicht erreichen, der Trick liegt in der elektrischen Ladung der Ionen.

Sie sorgt dafür, dass viel Energie auf einem winzigen Punkt der Folie deponiert werden kann und ein Loch entsteht. Die Forschungsergebnisse wurden nun im Fachjournal „Physical Review Letters“ publiziert. Das Team der TU Wien wurde bei dem Projekt vom Helmholtz-Zentrum Dresden-Rossendorf und der TU Dresden unterstützt.

Xenon-Atome und Kohlenstoff-Folien

Als Projektile werden im Experiment an der TU Wien Xenon-Ionen verwendet. Zehn bis dreißig Elektronen nimmt man jedem Xenon-Atom weg, es ist dann also stark elektrisch geladen und wird auf eine Probe geschossen, zum Beispiel eine Kohlenstoff-Folie.

Normalerweise verliert das Projektil auf jedem Wegstück, den es in der Folie zurücklegt, einen bestimmten Anteil seiner Energie, weil es immer wieder heftig mit den Atomen der Folie kollidiert. Dieses einfache Modell macht allerdings keinen Sinn mehr, wenn man Folien verwendet, die nur einige wenige Atomlagen dick sind – in der Größenordnung von wenigen Nanometern.

„Beim Beschuss solcher Nanomembranen stellten wir fest, dass wir dann auf der anderen Seite der Folie plötzlich zwei unterschiedliche Sorten von Ionen mit unterschiedlichen Energie- und Ladungsverteilungen detektieren“, sagt Prof. Friedrich Aumayr vom Institut für Angewandte Physik der TU Wien. Einerseits gibt es Ionen, die beim Durchdringen der Folie ihre elektrische Ladung ganz drastisch verändern.

Sie holen sich eine große Zahl von Elektronen aus der Folie und verlieren gleichzeitig Energie. Andererseits gibt es Ionen, die von der Folie kaum beeinflusst werden: Sie sind nach dem Durchdringen der Membran noch immer hoch geladen, haben auf ihrem Weg praktisch keinen Energieverlust erlitten und die meisten der aufgenommenen Elektronen wieder abgegeben.

Der Grund dafür liegt in der geometrischen Anordnung der Atome in der Nano-Membran: „Manche Ionen treffen frontal auf einen Atomkern in der Folie“, erklärt Friedrich Aumayr. „Bei solchen heftigen Kollisionen verlieren sie Energie und können eine ganze Reihe von Elektronen mitnehmen.“ Allerdings lassen sich durch die ultradünne Membran auch Wege finden, die zwischen allen Atomkernen hindurchführen, sodass es nur eine verhältnismäßig schwache Wechselwirkung mit den Atomkernen der Membran gibt. Das führt dann zu einer Durchdringung der Folie mit Ionen, die auch danach noch erstaunlich stark elektrisch geladen sind.

Die Ladung bestimmt den Energieaustausch

Normalerweise erleben Ionen in festem Material so viele Stöße mit anderen Teilchen, dass ihre elektrische Ladung am Ende gar nichts mehr mit der ursprünglichen Ladung zu tun hat. Ionen können einerseits Elektronen aus der Folie einfangen – das gelingt ihnen am besten, wenn sie relativ langsam sind, oder sie können unterwegs Elektronen verlieren und sich damit wieder stärker positiv aufladen – dieser Effekt überwiegt bei schnellen Ionen. So stellt sich schließlich je nach Geschwindigkeit ein Gleichgewichtszustand zwischen Elektronenverlust und Elektroneneinfang her, ganz unabhängig davon, wie viele Elektronen das Ion am Anfang hatte. Doch die Wegstrecke durch die extrem dünnen Nanomembranen ist so kurz, dass das Ion gar keine Zeit hat, diesen Gleichgewichtszustand zu erreichen. Das Experiment an der TU Wien zeigt, dass der Energieverlust der Ionen von ihrem Ladungszustand abhängt und deshalb gezielt gesteuert werden kann.

Mit Ionenbeschuss zum Nano-Sieb

Dass man nun verstanden hat, wie Ionen mit extrem dünnen Membranen wechselwirken, eröffnet aufregende neue Möglichkeiten in der Nanotechnologie: „Mit unseren hochgeladenen Ionen können wir nun in vier Sekunden eine Million Löcher in einen Quadratzentimeter Folie schießen“, erklärt Friedrich Aumayr. Die hochgeladenen Ionen fangen Elektronen ein, die sich zunächst in einem Zustand mit sehr hoher Energie befinden. Beim Einschlag wird diese Energie dann freigesetzt und auf die Folie übertragen. Darum können hochgeladene Ionen Löcher erzeugen, auch wenn das mit einem neutralen Atom derselben Geschwindigkeit niemals möglich wäre.

Der Strahl hochgeladener Ionen wird zur Nano-Schrotflinte, damit lassen sich Oberflächen oder Folien nanostrukturieren. Man kann beispielsweise ein Nano-Sieb herstellen, dessen Löcher bestimmte Moleküle gezielt durchlassen und andere nicht. Demnächst sollen die Experimente sogar mit den dünnsten aller möglichen Kohlenstoffmembranen durchgeführt werden: Mit Graphen, das aus bloß einer Atomlage besteht.

Rückfragehinweis:
Univ.Prof. Friedrich Aumayr
Technische Universität Wien
Institut für Angewandte Physik
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-134 30
friedrich.aumayr@tuwien.ac.at

Aussender:
Technische Universität Wien
Büro für Öffentlichkeitsarbeit
Operngasse 11/5. Stock, 1040 Wien
Dipl.-Ing. Florian Aigner
T: +43-1-58801-41027
florian.aigner@tuwien.ac.at

Weitere Informationen:

http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2014/karbonfolie/ weitere Bilder
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.153201 Originalpublikation

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Spin-Strom aus Wärme: Neues Material für höhere Effizienz
20.11.2017 | Universität Bielefeld

nachricht cw-Wert wie ein Lkw: FH Aachen testet Weihnachtsbaum im Windkanal
20.11.2017 | FH Aachen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

500 Kommunikatoren zu Gast in Braunschweig

20.11.2017 | Veranstaltungen

VDI-Expertenforum „Gefährdungsanalyse Trinkwasser"

20.11.2017 | Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Künstliche neuronale Netze: 5-Achs-Fräsbearbeitung lernt, sich selbst zu optimieren

20.11.2017 | Informationstechnologie

Tonmineral bewässert Erdmantel von innen

20.11.2017 | Geowissenschaften

Hemmung von microRNA-29 schützt vor Herzfibrosen

20.11.2017 | Biowissenschaften Chemie