Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Ionenstrahl als Nano-Schrotflinte

22.04.2014

Nanometergroße Löcher lassen sich mit Ionen in dünne Membranen schießen, allerdings verhalten sich die Ionen dabei anders als gedacht. Mit hochgeladenen Ionen lassen sich durchlöcherte Membranen herstellen, die als molekulares Sieb dienen.

Wenn man Gewehrkugeln durch eine Holzplatte schießt, werden sie abgebremst. Ähnlich ergeht es Ionen, die man auf dünne Folien feuert. Doch wenn man extrem dünne Folien verwendet, die nur aus wenigen Atomlagen bestehen, sieht die Sache anders aus. Das Verhalten der Ionen hängt dann davon ab, ob sie mit einem Atomkern der Folie heftig zusammenstoßen oder ob es ihnen gelingt, sich sanft zwischen den Kernen hindurch zu schummeln.


Elisabeth Gruber vor ihrer Ultrahochvakuumapparatur

TU Wien


Manche Ionen gelangen auf geradem Weg durch die Folie, andere erfahren heftigere Ablenkungen.

TU Wien

Durch die Verwendung hochgeladener Ionen wird es möglich, Nano-Folien gezielt zu bearbeiten – etwa indem man sie mit vielen kleinen Löchern versieht, sodass ein „molekulares Sieb“ entsteht. Durch die bloße Wucht des Ionen-Einschlags lässt sich das nicht erreichen, der Trick liegt in der elektrischen Ladung der Ionen.

Sie sorgt dafür, dass viel Energie auf einem winzigen Punkt der Folie deponiert werden kann und ein Loch entsteht. Die Forschungsergebnisse wurden nun im Fachjournal „Physical Review Letters“ publiziert. Das Team der TU Wien wurde bei dem Projekt vom Helmholtz-Zentrum Dresden-Rossendorf und der TU Dresden unterstützt.

Xenon-Atome und Kohlenstoff-Folien

Als Projektile werden im Experiment an der TU Wien Xenon-Ionen verwendet. Zehn bis dreißig Elektronen nimmt man jedem Xenon-Atom weg, es ist dann also stark elektrisch geladen und wird auf eine Probe geschossen, zum Beispiel eine Kohlenstoff-Folie.

Normalerweise verliert das Projektil auf jedem Wegstück, den es in der Folie zurücklegt, einen bestimmten Anteil seiner Energie, weil es immer wieder heftig mit den Atomen der Folie kollidiert. Dieses einfache Modell macht allerdings keinen Sinn mehr, wenn man Folien verwendet, die nur einige wenige Atomlagen dick sind – in der Größenordnung von wenigen Nanometern.

„Beim Beschuss solcher Nanomembranen stellten wir fest, dass wir dann auf der anderen Seite der Folie plötzlich zwei unterschiedliche Sorten von Ionen mit unterschiedlichen Energie- und Ladungsverteilungen detektieren“, sagt Prof. Friedrich Aumayr vom Institut für Angewandte Physik der TU Wien. Einerseits gibt es Ionen, die beim Durchdringen der Folie ihre elektrische Ladung ganz drastisch verändern.

Sie holen sich eine große Zahl von Elektronen aus der Folie und verlieren gleichzeitig Energie. Andererseits gibt es Ionen, die von der Folie kaum beeinflusst werden: Sie sind nach dem Durchdringen der Membran noch immer hoch geladen, haben auf ihrem Weg praktisch keinen Energieverlust erlitten und die meisten der aufgenommenen Elektronen wieder abgegeben.

Der Grund dafür liegt in der geometrischen Anordnung der Atome in der Nano-Membran: „Manche Ionen treffen frontal auf einen Atomkern in der Folie“, erklärt Friedrich Aumayr. „Bei solchen heftigen Kollisionen verlieren sie Energie und können eine ganze Reihe von Elektronen mitnehmen.“ Allerdings lassen sich durch die ultradünne Membran auch Wege finden, die zwischen allen Atomkernen hindurchführen, sodass es nur eine verhältnismäßig schwache Wechselwirkung mit den Atomkernen der Membran gibt. Das führt dann zu einer Durchdringung der Folie mit Ionen, die auch danach noch erstaunlich stark elektrisch geladen sind.

Die Ladung bestimmt den Energieaustausch

Normalerweise erleben Ionen in festem Material so viele Stöße mit anderen Teilchen, dass ihre elektrische Ladung am Ende gar nichts mehr mit der ursprünglichen Ladung zu tun hat. Ionen können einerseits Elektronen aus der Folie einfangen – das gelingt ihnen am besten, wenn sie relativ langsam sind, oder sie können unterwegs Elektronen verlieren und sich damit wieder stärker positiv aufladen – dieser Effekt überwiegt bei schnellen Ionen. So stellt sich schließlich je nach Geschwindigkeit ein Gleichgewichtszustand zwischen Elektronenverlust und Elektroneneinfang her, ganz unabhängig davon, wie viele Elektronen das Ion am Anfang hatte. Doch die Wegstrecke durch die extrem dünnen Nanomembranen ist so kurz, dass das Ion gar keine Zeit hat, diesen Gleichgewichtszustand zu erreichen. Das Experiment an der TU Wien zeigt, dass der Energieverlust der Ionen von ihrem Ladungszustand abhängt und deshalb gezielt gesteuert werden kann.

Mit Ionenbeschuss zum Nano-Sieb

Dass man nun verstanden hat, wie Ionen mit extrem dünnen Membranen wechselwirken, eröffnet aufregende neue Möglichkeiten in der Nanotechnologie: „Mit unseren hochgeladenen Ionen können wir nun in vier Sekunden eine Million Löcher in einen Quadratzentimeter Folie schießen“, erklärt Friedrich Aumayr. Die hochgeladenen Ionen fangen Elektronen ein, die sich zunächst in einem Zustand mit sehr hoher Energie befinden. Beim Einschlag wird diese Energie dann freigesetzt und auf die Folie übertragen. Darum können hochgeladene Ionen Löcher erzeugen, auch wenn das mit einem neutralen Atom derselben Geschwindigkeit niemals möglich wäre.

Der Strahl hochgeladener Ionen wird zur Nano-Schrotflinte, damit lassen sich Oberflächen oder Folien nanostrukturieren. Man kann beispielsweise ein Nano-Sieb herstellen, dessen Löcher bestimmte Moleküle gezielt durchlassen und andere nicht. Demnächst sollen die Experimente sogar mit den dünnsten aller möglichen Kohlenstoffmembranen durchgeführt werden: Mit Graphen, das aus bloß einer Atomlage besteht.

Rückfragehinweis:
Univ.Prof. Friedrich Aumayr
Technische Universität Wien
Institut für Angewandte Physik
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-134 30
friedrich.aumayr@tuwien.ac.at

Aussender:
Technische Universität Wien
Büro für Öffentlichkeitsarbeit
Operngasse 11/5. Stock, 1040 Wien
Dipl.-Ing. Florian Aigner
T: +43-1-58801-41027
florian.aigner@tuwien.ac.at

Weitere Informationen:

http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2014/karbonfolie/ weitere Bilder
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.153201 Originalpublikation

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Freie Elektronen in Sonnen-Protuberanzen untersucht
25.07.2017 | Georg-August-Universität Göttingen

nachricht Magnetische Quantenobjekte im "Nano-Eierkarton": PhysikerInnen bauen künstliche Fallen für Fluxonen
25.07.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Blattkäfer: Schon winzige Pestizid-Dosis beeinträchtigt Fortpflanzung

26.07.2017 | Biowissenschaften Chemie

Akute myeloische Leukämie (AML): Neues Medikament steht kurz vor der Zulassung in Europa

26.07.2017 | Biowissenschaften Chemie

Biomarker zeigen Aggressivität des Tumors an

26.07.2017 | Biowissenschaften Chemie