Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der heißeste weiße Zwergstern der Galaxis

23.11.2015

Astronomen der Universitäten Tübingen und Potsdam orten sterbenden Stern sowie intergalaktisches Gas, das in die Milchstraße stürzt

Astronomen der Universitäten Tübingen und Potsdam haben den heißesten weißen Zwergstern identifiziert, der jemals in unserer Galaxis nachgewiesen wurde: Mit einer Temperatur von 250.000 Grad bewegt sich der sterbende Stern im Außenbereich der Milchstraße und befindet sich dabei sogar schon wieder in der Abkühlphase.


Skizze der Milchstraße mit Positionen der Sonne, des weißen Zwergsterns und der Gaswolke dazwischen. Von der Sonne aus gesehen liegen Stern u. Gaswolke vor d. benachbarten Großen Magellanschen Wolke.

Abbildung: Philipp Richter/Universität Potsdam

Zudem konnten die Wissenschaftler erstmals eine intergalaktische Gaswolke beobachten, die sich auf die Milchstraße zubewegt ‒ ein Hinweis darauf, dass Galaxien „frisches Material“ von außen sammeln und daraus neue Sterne bilden können. Die Ergebnisse wurden im Fachjournal „Astronomy & Astrophysics“ veröffentlicht.

Sterne mit relativ geringer Masse wie die Sonne werden zum Ende ihres Lebens extrem heiß. Die Oberflächentemperatur der Sonne liegt seit ihrer Geburt vor 4,6 Milliarden Jahren recht konstant bei 6000 Grad Celsius. Unmittelbar vor der Erschöpfung der nuklearen Energiequellen in etwa fünf Milliarden Jahren wird sie eine 30-fach höhere Temperatur von rund 180.000 Grad erreichen, bevor sie als sogenannter weißer Zwergstern wieder abkühlt.

Laut Computersimulationen können schwerere Sterne sogar noch heißer werden. Die bisher höchste Temperatur eines solchen sterbenden Sterns wurde mit 200.000 Grad bestimmt.

Bei der Auswertung von Aufnahmen des Hubble-Weltraumteleskops konnten die Wissenschaftler nun den neuen Rekordhalter mit 250.000 Grad Celsius nachweisen. Das schafft nur ein Stern, der etwa fünfmal schwerer als die Sonne war. Der Stern mit der Katalognummer RX J0439.8-6809 ist bereits in seiner Abkühlphase und muss vor etwa tausend Jahren eine Maximaltemperatur von sogar 400.000 Grad erreicht haben.

Seine chemische Zusammensetzung ist noch unverstanden. Laut Analysen sind Kohlenstoff und Sauerstoff an der Oberfläche nachweisbar, Produkte der Kernfusion von Helium, die normalerweise tief im Inneren eines Sterns verborgen bleiben.

RX J0439.8-6809 fiel schon vor mehr als zwanzig Jahren in einer Röntgendurchmusterung des Himmels als auffällig helle und deshalb heiße Quelle auf. Ursprünglich ging man von einem weißen Zwerg aus, der auf seiner Oberfläche Wasserstoff zu Helium fusioniert, den er von einem Begleitstern abzieht.

Auch nahm man an, dass er sich in unserer Nachbargalaxie befindet, der Großen Magellanschen Wolke. Die Hubble-Daten zeigen nun, dass der Stern zum Außenbereich unserer Milchstraße gehört und sich mit einer Geschwindigkeit von 220 Kilometern pro Sekunde von uns weg bewegt.

Das Ultraviolettspektrum des Sterns hält aber eine weitere Überraschung bereit. In ihm kann Gas nachgewiesen werden, das nicht zum Stern gehört, sondern zu einer Wolke, die sich zwischen Milchstraße und Stern befindet. Mit Hilfe des Dopplereffekts lässt sich bestimmen, dass sich diese Gaswolke mit hoher Geschwindigkeit von uns entfernt (150 km/s) und sich auf die Milchstraße zu bewegt.

Es war zwar bekannt, dass solches Hochgeschwindigkeits-Gas in Richtung der Großen Magellanschen Wolke existiert, allerdings konnte bislang nicht eindeutig ermittelt werden, ob es sich in der Milchstraße oder in der Nachbargalaxie befindet. Der Nachweis der Gaswolke in dem Sternspektrum beweist nun, dass diese Wolke zu unserer Galaxis gehört.

Ihre chemische Zusammensetzung lässt vermuten, dass sie ursprünglich nicht zur Milchstraße gehörte, sondern aus dem intergalaktischen Raum stammt. Dies ist ein eindeutiger Hinweis darauf, dass Galaxien Material von außen aufsammeln und daraus neue Sterne bilden können.

Publikationen:
Analyse des Sterns: K. Werner, T. Rauch: Astronomy & Astrophysics, Vol. 584 (Dezember 2015), A19, DOI: http://dx.doi.org/10.1051/0004-6361/201527261

Analyse der Gaswolke: P. Richter, K.S. de Boer, K. Werner, T. Rauch: Astronomy & Astrophysics, Vol. 584 (Dezember 2015), L6, DOI: http://dx.doi.org/10.1051/0004-6361/201527451

Kontakt:
Prof. Dr. Klaus Werner
Universität Tübingen
Mathematisch-Naturwissenschaftliche Fakultät
Institut für Astronomie und Astrophysik / Kepler Center for Astro and Particle Physics
Tel. +49 7071 29 78601
werner[at]astro.uni-tuebingen.de

Prof. Dr. Philipp Richter
Universität Potsdam
Mathematisch-Naturwissenschaftliche Fakultät
Institut für Physik und Astronomie
Tel. +49 331 977 1841
prichter[at]astro.physik.uni-potsdam.de

Antje Karbe | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-tuebingen.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

nachricht Einblicke ins Atom
23.01.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie

Vom Feld in die Schule: Aktuelle Forschung zu moderner Landwirtschaft für den Unterricht

23.01.2017 | Bildung Wissenschaft

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungsnachrichten