Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Erfolgscocktail wurde geschüttelt

13.11.2014

Man nehme ultrakalte Kaliumatome, lege ein wabenförmiges Gitter aus Laserstrahlen darüber und schüttle alles im Kreis: Mit diesem Rezept gelang es ETH-Forschern, eine Idee aus dem Jahr 1988 für eine neue Klasse von Materialien experimentell zu realisieren.

Graphen gilt als Wundermaterial der Zukunft. Das Material aus einer Schicht von Kohlenstoffatomen, angeordnet in einem wabenförmigen Gitter, ist extrem stabil, elastisch, leitfähig und für elektronische Anwendungen besonders interessant. ETH-Professor Tilman Esslinger und seine Gruppe am Institut für Quantenelektronik untersuchen künstliches Graphen.


Ein Möbiusband lässt sich nicht ohne Schnitt in ein normales Band transformieren. (Grafik: Gregor Jotzu / ETH Zürich)

Ihre Wabenstruktur besteht nicht aus Atomen, sondern aus Licht. Die Forscher richten dazu mehrere Laserstrahlen so aus, dass sich stehende Wellen bilden und zu Sechsecken addieren. Dieses optische Gitter wird über Kaliumatome gelegt, die in einer Vakuumkammer auf Temperaturen nahe dem absoluten Nullpunkt abgekühlt wurden. Gefangen in der hexagonalen Struktur verhalten sich die Kaliumatome wie die Elektronen in Graphen.

«Wir arbeiten mit Atomen in Laserstrahlen, weil wir damit ein System haben, das sich besser kontrollieren und einfacher beobachten lässt als das Material selbst», erklärt Physikdoktorand Gregor Jotzu. Da es den Forschern vor allem darum geht, quantenmechanische Wechselwirkungen nachzuvollziehen, bezeichnen sie ihr System auch als Quantensimulator.

Mit Hilfe dieser Testanordnung gelang ihnen jetzt die Realisation einer Idee, die der britische Physiker Duncan Haldane 1988 veröffentlicht hatte. Festkörperphysiker hätten gehofft, sie könnten Haldanes Modell mit realem Graphen verwirklichen – bisher vergeblich, sagt Tilman Esslinger: «Nun gelang uns dies mit einem anderen System. Das ist ein sehr schöner und auch neuer Schritt.»

Die Zeitsymmetrie brechen

Haldane hatte vorgeschlagen, dass es eine neue Klasse von Materialien mit ungewöhnlichen Eigenschaften geben könnte, die durch deren so genannte Topologie bestimmt sind. Mathematisch betrachtet haben Objekte die gleiche Topologie, wenn man sie durch stetiges Verformen wie Stauchen oder Ziehen ineinander umformen kann, so wie das bei einer Orange und einer Banane möglich wäre. Braucht es für die Transformation einen Schnitt, sind die Objekte topologisch verschieden. So lässt sich eine Möbiusschleife nicht in ein normales Band verwandeln, ohne sie zu zerschneiden und neu zusammenzufügen.

Im Haldane-Modell hat das betrachtete System nicht mehr die gleiche Topologie wie in gewöhnlichen Materialien. Um dieses System zu realisieren, braucht es eine besondere «Zutat», die Physiker sprechen dabei von einer Symmetriebrechung: Die Zeitumkehr bricht. Das bedeutet, dass sich das System nicht gleich verhält, wenn man die Zeit rückwärts laufen lässt.

Normalerweise sieht ein physikalisches System gleich aus, ob man die Zeit vorwärts oder rückwärts laufen lässt. Das heisst, diese Symmetriebrechung geschieht nicht. Theoretisch liesse sie sich aber im realen Material mit Magnetfeldern realisieren. Allerdings müssten die Magnete dazu kleiner sein als der Abstand von Atomen in einem Festkörper, also rund 0,1 Nanometer. Sie müssten demnach extrem präzis platziert werden.

«Die Teilchen erleben eine verdrehte Welt»

Im Quantensimulator jedoch können die Forscher die Zeitumkehr mit einem relativ einfachen Trick brechen, wie sie nun im Fachjournal Nature berichten. «Wir schütteln das ganze System im Kreis», sagt Jotzu. Dazu setzen die Forscher kleine Piezokristalle auf Spiegel, die das Laserlicht reflektieren. Dann lassen sie die Piezokristalle vibrieren. «Das ist hörbar wie ein hoher Flötenton», so der Physiker. Bei der richtigen Frequenz und Stärke fallen die Atome nicht aus dem Lasergitter, wie man erwarten könnte, sondern bleiben gefangen.

Bewegen die Forscher das System nur auf einer Linie hin und her, verhalten sich die Atome weiterhin normal. Doch beim Schütteln im Kreis passiert es: «Die Teilchen erleben eine verdrehte Welt», erklärt Esslinger, so wie sich das Fortbewegen auf einer Möbiusschleife von demjenigen auf einem normalen Band unterscheiden würde. Die Topologie und damit die Eigenschaften des Systems haben sich geändert, als wäre es ein völlig anderes, neues Material.

Testen, was noch nicht existiert

Dass sie das topologische Haldane-Modell experimentell realisieren konnten, habe sie überrascht, sagt der ETH-Professor. «Etwas aus der Hüfte geschossen» sei der Versuch gewesen. Entsprechend feierten die Forscher ihren Erfolg denn auch mit dem passenden Drink – geschüttelt. Doch Esslinger warnt vor voreiligen Schlüssen: «Wir selbst stellen keine neuen Materialien her, wir testen nur Konzepte.» Dabei sind die Experimente mit Laser und ultrakalten Atomen den Computersimulationen überlegen, wenn ein System zu komplex für die Berechnungen ist. «Damit können wir die Eigenschaften von Materialien untersuchen, die es noch gar nicht gibt», sagt Gregor Jotzu.

Ob sich das jetzt im Quantensimulator erhaltene Resultat dereinst auf reales Material übertragen lässt, ist noch ungewiss. Doch Ideen gibt es bereits: Würde man auf echtes Graphen zirkumpolarisiertes Licht schicken, könnte das eine ähnliche Wirkung haben, wie wenn man künstliches Graphen im Kreis schüttelt. Diesen Vorschlag hätten zwei japanische Kollegen gemacht, als sie an der ETH zu Besuch waren, erzählt Esslinger. Damit könnte es beispielsweise künftig möglich werden, mit Lichtsteuerung aus einem leitenden Material einen Isolator zu machen und umgekehrt. Die elektronischen Anwendungen für ein derartiges System, das besonders schnell reagieren könnte, wären äusserst vielfältig.

Die Arbeiten am Institut für Quantenelektronik wurden im Rahmen des Forschungsverbundes Quantum Science and Technology (QSIT) durchgeführt. Am QSIT sind neben der ETH Zürich auch Gruppen von den Universitäten Basel, Lausanne, Genf und IBM Research beteiligt.

Literaturhinweis

Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D, Esslinger T. Experimental realization of the topological Haldane model with ultracold fermions. 2014. Nature, Online-Publikation vom 13. November 2014, DOI: 10.1038/nature13915 [http://10.1038/nature13915]

News und Medienstelle | ETH Zürich
Weitere Informationen:
http://www.ethz.ch

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall
22.08.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten
21.08.2017 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer IPM präsentiert »Deep Learning Framework« zur automatisierten Interpretation von 3D-Daten

22.08.2017 | Informationstechnologie

Globale Klimaextreme nach Vulkanausbrüchen

22.08.2017 | Geowissenschaften

RWI/ISL-Containerumschlag-Index erreicht neuen Höchstwert

22.08.2017 | Wirtschaft Finanzen