Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Erfolgscocktail wurde geschüttelt

13.11.2014

Man nehme ultrakalte Kaliumatome, lege ein wabenförmiges Gitter aus Laserstrahlen darüber und schüttle alles im Kreis: Mit diesem Rezept gelang es ETH-Forschern, eine Idee aus dem Jahr 1988 für eine neue Klasse von Materialien experimentell zu realisieren.

Graphen gilt als Wundermaterial der Zukunft. Das Material aus einer Schicht von Kohlenstoffatomen, angeordnet in einem wabenförmigen Gitter, ist extrem stabil, elastisch, leitfähig und für elektronische Anwendungen besonders interessant. ETH-Professor Tilman Esslinger und seine Gruppe am Institut für Quantenelektronik untersuchen künstliches Graphen.


Ein Möbiusband lässt sich nicht ohne Schnitt in ein normales Band transformieren. (Grafik: Gregor Jotzu / ETH Zürich)

Ihre Wabenstruktur besteht nicht aus Atomen, sondern aus Licht. Die Forscher richten dazu mehrere Laserstrahlen so aus, dass sich stehende Wellen bilden und zu Sechsecken addieren. Dieses optische Gitter wird über Kaliumatome gelegt, die in einer Vakuumkammer auf Temperaturen nahe dem absoluten Nullpunkt abgekühlt wurden. Gefangen in der hexagonalen Struktur verhalten sich die Kaliumatome wie die Elektronen in Graphen.

«Wir arbeiten mit Atomen in Laserstrahlen, weil wir damit ein System haben, das sich besser kontrollieren und einfacher beobachten lässt als das Material selbst», erklärt Physikdoktorand Gregor Jotzu. Da es den Forschern vor allem darum geht, quantenmechanische Wechselwirkungen nachzuvollziehen, bezeichnen sie ihr System auch als Quantensimulator.

Mit Hilfe dieser Testanordnung gelang ihnen jetzt die Realisation einer Idee, die der britische Physiker Duncan Haldane 1988 veröffentlicht hatte. Festkörperphysiker hätten gehofft, sie könnten Haldanes Modell mit realem Graphen verwirklichen – bisher vergeblich, sagt Tilman Esslinger: «Nun gelang uns dies mit einem anderen System. Das ist ein sehr schöner und auch neuer Schritt.»

Die Zeitsymmetrie brechen

Haldane hatte vorgeschlagen, dass es eine neue Klasse von Materialien mit ungewöhnlichen Eigenschaften geben könnte, die durch deren so genannte Topologie bestimmt sind. Mathematisch betrachtet haben Objekte die gleiche Topologie, wenn man sie durch stetiges Verformen wie Stauchen oder Ziehen ineinander umformen kann, so wie das bei einer Orange und einer Banane möglich wäre. Braucht es für die Transformation einen Schnitt, sind die Objekte topologisch verschieden. So lässt sich eine Möbiusschleife nicht in ein normales Band verwandeln, ohne sie zu zerschneiden und neu zusammenzufügen.

Im Haldane-Modell hat das betrachtete System nicht mehr die gleiche Topologie wie in gewöhnlichen Materialien. Um dieses System zu realisieren, braucht es eine besondere «Zutat», die Physiker sprechen dabei von einer Symmetriebrechung: Die Zeitumkehr bricht. Das bedeutet, dass sich das System nicht gleich verhält, wenn man die Zeit rückwärts laufen lässt.

Normalerweise sieht ein physikalisches System gleich aus, ob man die Zeit vorwärts oder rückwärts laufen lässt. Das heisst, diese Symmetriebrechung geschieht nicht. Theoretisch liesse sie sich aber im realen Material mit Magnetfeldern realisieren. Allerdings müssten die Magnete dazu kleiner sein als der Abstand von Atomen in einem Festkörper, also rund 0,1 Nanometer. Sie müssten demnach extrem präzis platziert werden.

«Die Teilchen erleben eine verdrehte Welt»

Im Quantensimulator jedoch können die Forscher die Zeitumkehr mit einem relativ einfachen Trick brechen, wie sie nun im Fachjournal Nature berichten. «Wir schütteln das ganze System im Kreis», sagt Jotzu. Dazu setzen die Forscher kleine Piezokristalle auf Spiegel, die das Laserlicht reflektieren. Dann lassen sie die Piezokristalle vibrieren. «Das ist hörbar wie ein hoher Flötenton», so der Physiker. Bei der richtigen Frequenz und Stärke fallen die Atome nicht aus dem Lasergitter, wie man erwarten könnte, sondern bleiben gefangen.

Bewegen die Forscher das System nur auf einer Linie hin und her, verhalten sich die Atome weiterhin normal. Doch beim Schütteln im Kreis passiert es: «Die Teilchen erleben eine verdrehte Welt», erklärt Esslinger, so wie sich das Fortbewegen auf einer Möbiusschleife von demjenigen auf einem normalen Band unterscheiden würde. Die Topologie und damit die Eigenschaften des Systems haben sich geändert, als wäre es ein völlig anderes, neues Material.

Testen, was noch nicht existiert

Dass sie das topologische Haldane-Modell experimentell realisieren konnten, habe sie überrascht, sagt der ETH-Professor. «Etwas aus der Hüfte geschossen» sei der Versuch gewesen. Entsprechend feierten die Forscher ihren Erfolg denn auch mit dem passenden Drink – geschüttelt. Doch Esslinger warnt vor voreiligen Schlüssen: «Wir selbst stellen keine neuen Materialien her, wir testen nur Konzepte.» Dabei sind die Experimente mit Laser und ultrakalten Atomen den Computersimulationen überlegen, wenn ein System zu komplex für die Berechnungen ist. «Damit können wir die Eigenschaften von Materialien untersuchen, die es noch gar nicht gibt», sagt Gregor Jotzu.

Ob sich das jetzt im Quantensimulator erhaltene Resultat dereinst auf reales Material übertragen lässt, ist noch ungewiss. Doch Ideen gibt es bereits: Würde man auf echtes Graphen zirkumpolarisiertes Licht schicken, könnte das eine ähnliche Wirkung haben, wie wenn man künstliches Graphen im Kreis schüttelt. Diesen Vorschlag hätten zwei japanische Kollegen gemacht, als sie an der ETH zu Besuch waren, erzählt Esslinger. Damit könnte es beispielsweise künftig möglich werden, mit Lichtsteuerung aus einem leitenden Material einen Isolator zu machen und umgekehrt. Die elektronischen Anwendungen für ein derartiges System, das besonders schnell reagieren könnte, wären äusserst vielfältig.

Die Arbeiten am Institut für Quantenelektronik wurden im Rahmen des Forschungsverbundes Quantum Science and Technology (QSIT) durchgeführt. Am QSIT sind neben der ETH Zürich auch Gruppen von den Universitäten Basel, Lausanne, Genf und IBM Research beteiligt.

Literaturhinweis

Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D, Esslinger T. Experimental realization of the topological Haldane model with ultracold fermions. 2014. Nature, Online-Publikation vom 13. November 2014, DOI: 10.1038/nature13915 [http://10.1038/nature13915]

News und Medienstelle | ETH Zürich
Weitere Informationen:
http://www.ethz.ch

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion
23.06.2017 | Max-Planck-Institut für Astrophysik

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften