Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Blick ins Atom

18.07.2016

Mit Elektronenmikroskopen kann man einzelne Atome abbilden – ein Rechenmodell der TU Wien erklärt, wie man sogar ins Atom hineinsehen und einzelne Elektronen-Orbitale abbilden könnte.

Mit einem Elektronenmikroskop kann man nicht eben mal schnell ein Foto machen, wie mit der Handykamera. Ob und wie gut sich eine Struktur elektronenmikroskopisch abbilden lässt, hängt davon ab, wie gut man diese Struktur versteht.


So kann man sich die Graphen-Orbitale rund um eine Fehlstelle vorstellen.

Um die Möglichkeiten der Elektronenmikroskopie voll auszuloten, sind oft komplizierte physikalische Berechnungen nötig. Ein internationales Forschungsteam, geleitet von Prof. Peter Schattschneider von der TU Wien analysierte nun die Möglichkeiten der Mikroskopietechnik EFTEM (energiegefilterte Transmissions- elektronenspektroskopie).

Dabei konnte man zeigen, dass unter bestimmten Bedingungen sogar einzelne Elektronenorbitale eines Atoms gut abgebildet werden können - die Elektronen- mikroskopie kann damit auf subatomare Größenordnung vordringen. Experimente dazu sind bereits geplant. Die Studie wurde nun im Fachjournal „Physical Review Letters“ veröffentlicht.

Auf der Suche nach dem Orbital

Oft stellt man sich Elektronen im Atom vor wie kleine Kügelchen, die den Atomkern umkreisen wie Miniaturplaneten eine Sonne – doch dieses Bild hat mit der Wirklichkeit meist nichts zu tun. Nach den Gesetzen der Quantenphysik hat ein Elektron zu einem bestimmten Zeitpunkt keinen fest definierbaren Aufenthaltsort, es ist gewissermaßen über einen bestimmten Bereich in der Nähe des Atomkerns verschmiert. Diesen Bereich, in dem sich das Elektron bevorzugt aufhält, nennt man Orbital. Die Form dieser Orbitale lässt sich schon lange gut berechnen – direkt abbilden konnte man sie bisher allerdings noch nicht.

„Wir haben berechnet, auf welche Weise eine Chance bestünde, die Orbitale mit einem Elektronenmikroskop sichtbar zu machen“, sagt Stefan Löffler von der Universitären Service-Einrichtung für Transmissions-Elektronenmikroskopie der TU Wien. „Ein ausgezeichneter Kandidat dafür ist Graphen, das nur aus einer Schicht von Kohlenstoffatomen besteht. Der Elektronenstrahl gelangt problemlos durch das Graphen hindurch, beinahe ohne elastische Streuung. Aus ihnen kann man dann ein Bild der Graphen-Struktur erstellen.“

Das Prinzip ist als „energiegefliterte Transmissionselektronenspektroskopie“ (EFTEM) schon seit Längerem bekannt. Es kann ganz gezielt bestimmte Atomsorten sichtbar machen und andere ausblenden, daher wird es heute oft verwendet, um die chemische Zusammensetzung von Proben zu analysieren. „Die Elektronen, die durch die Probe hindurchgeschossen werden, können die Atome der Probe anregen“, erklärt Stefan Löffler. „Dabei geben sie eine für bestimmte Elektronen-Orbitale der Probe charakteristische Energie ab.“

Nach dem Durchtritt durch die Probe werden die Elektronen mit Hilfe eines magnetischen Feldes nach Energie sortiert. „Mit einer Blende werden die uninteressanten Elektronen ausgefiltert, nur jene Elektronen, welche die gewünschte Information tragen, verwendet man für die Bilderzeugung.“

Fehler sind nützlich

In Simulationsrechnungen untersuchte das Team, wie man diese Technik auf die Spitze treiben kann und fand dabei einen Fall, der sich tatsächlich zum Abbilden einzelner Orbitale eignet: „Man muss die Symmetrie im Graphen brechen“, sagt Stefan Löffler. „Wenn die Graphen-Struktur beispielsweise ein Loch hat, dann haben die Atome direkt neben diesem Loch eine etwas andere elektronische Struktur – und die Orbitale genau dieser Atome kann man abbilden. Dasselbe ist möglich, wenn irgendwo im Graphen statt eines Kohlenstoffatoms ein Stickstoffatom sitzt. Wichtig ist dabei, nur Elektronen eines genau passenden, engen Energiefensters zu berücksichtigen, bestimmte Aberrationen der elektromagnetischen Linse zu minimieren, und – nicht zuletzt – ein erstklassiges Elektronenmikroskop zu verwenden“. Aber all diese Probleme sind in den Griff zu bekommen, wie die Simulationsrechnungen der Forschungsgruppe zeigen.

Neben der TU Wien waren auch die Humboldt-Universität in Berlin und die Universität Ulm an der Studie beteiligt. In Ulm wird derzeit ein neues, leistungsfähiges Transmissions-elektronenmikroskop entwickelt, an dem man die neuen Ideen demnächst umsetzen wird. Erste Ergebnisse übertreffen bereits die Erwartungen.

Rückfragehinweise:
Dr. Stefan Löffler
Service-Einrichtung für Transmissions-
Elektronenmikroskopie (USTEM)
Technische Universität Wien
Wiedner Hauptstraße 8, 1040 Wien
T: +43-1-58801-45226
stefan.loeffler@tuwien.ac.at

Prof. Peter Schattschneider
Institut für Festkörperphysik
Technische Universität Wien
Wiedner Hauptstraße 8, 1040 Wien
peter.schattschneider@tuwien.ac.at

Aussender:
Dr. Florian Aigner
Büro für Öffentlichkeitsarbeit
Technische Universität Wien
Operngasse 11, 1040 Wien
T: +43-1-58801-41027
florian.aigner@tuwien.ac.at

Weitere Informationen:

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.117.036801 Originalpublikation: Mapping Atomic Orbitals with the Transmission Electron Microscope: Images of Defective Graphene Predicted from First-Principles Theory
https://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2016/orbitale Bilderdownload

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Topologische Isolatoren: Neuer Phasenübergang entdeckt
17.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Vorhersagen bestätigt: Schwere Elemente bei Neutronensternverschmelzungen nachgewiesen
17.10.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Topologische Isolatoren: Neuer Phasenübergang entdeckt

Physiker des HZB haben an BESSY II Materialien untersucht, die zu den topologischen Isolatoren gehören. Dabei entdeckten sie einen neuen Phasenübergang zwischen zwei unterschiedlichen topologischen Phasen. Eine dieser Phasen ist ferroelektrisch: das bedeutet, dass sich im Material spontan eine elektrische Polarisation ausbildet, die sich durch ein äußeres elektrisches Feld umschalten lässt. Dieses Ergebnis könnte neue Anwendungen wie das Schalten zwischen unterschiedlichen Leitfähigkeiten ermöglichen.

Topologische Isolatoren zeichnen sich dadurch aus, dass sie an ihren Oberflächen Strom sehr gut leiten, während sie im Innern Isolatoren sind. Zu dieser neuen...

Im Focus: Smarte Sensoren für effiziente Prozesse

Materialfehler im Endprodukt können in vielen Industriebereichen zu frühzeitigem Versagen führen und den sicheren Gebrauch der Erzeugnisse massiv beeinträchtigen. Eine Schlüsselrolle im Rahmen der Qualitätssicherung kommt daher intelligenten, zerstörungsfreien Sensorsystemen zu, die es erlauben, Bauteile schnell und kostengünstig zu prüfen, ohne das Material selbst zu beschädigen oder die Oberfläche zu verändern. Experten des Fraunhofer IZFP in Saarbrücken präsentieren vom 7. bis 10. November 2017 auf der Blechexpo in Stuttgart zwei Exponate, die eine schnelle, zuverlässige und automatisierte Materialcharakterisierung und Fehlerbestimmung ermöglichen (Halle 5, Stand 5306).

Bei Verwendung zeitaufwändiger zerstörender Prüfverfahren zieht die Qualitätsprüfung durch die Beschädigung oder Zerstörung der Produkte enorme Kosten nach...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

Intelligente Messmethoden für die Bauwerkssicherheit: Fachtagung „Messen im Bauwesen“ am 14.11.2017

17.10.2017 | Veranstaltungen

Meeresbiologe Mark E. Hay zu Gast bei den "Noblen Gesprächen" am Beutenberg Campus in Jena

16.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Sicheres Bezahlen ohne Datenspur

17.10.2017 | Informationstechnologie

Pflanzen gegen Staunässe schützen

17.10.2017 | Biowissenschaften Chemie

Den Trends der Umweltbranche auf der Spur

17.10.2017 | Ökologie Umwelt- Naturschutz