Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Den Quasiteilchen auf der Spur

02.11.2016

Elektronen in Festkörpern können sich zu sogenannten Quasiteilchen zusammentun, die neue Phänomene hervorbringen. ETH-Physiker haben nun bislang nicht identifizierte Quasiteilchen in einer neuen Klasse von Festkörpern untersucht, die aus nur einer atomaren Schicht bestehen. Mit ihren Ergebnissen korrigieren die Forscher eine bisher vorherrschende Fehlinterpretation.

Um Wetterphänomene zu verstehen und vorherzusagen, ist es wenig sinnvoll, das Verhalten von einzelnen Wassertröpfchen oder Luftmolekülen zu betrachten. Stattdessen sprechen Meteorologen (und auch Laien) von Wolken, Winden und Niederschlag – Objekte also, die sich aus dem komplexen Zusammenspiel kleiner Teilchen ergeben.


Ein Polaron (orange) bildet sich inmitten der Elektronen (violett) eines Festkörpers.

ETH Zürich / Meinrad Sidler

Physiker, die sich mit optischen Eigenschaften oder der Leitfähigkeit von Festkörpern befassen, machen es ganz ähnlich. Auch hier sind kleinste Teilchen – Elektronen und Atome – für die verschiedensten Phänomene verantwortlich, doch ein aufschlussreiches Bild ergibt sich erst, wenn man viele von ihnen zu «Quasiteilchen» zusammenfasst.

Herauszufinden, welche Quasiteilchen genau sich in einem Material bilden und wie diese sich gegenseitig beeinflussen, ist allerdings keine leichte Aufgabe und gleicht einem enormen Puzzle, dessen Teile sich durch langwierige Forschung nach und nach zusammenfügen. Ataç Imamoğlu und seinen Mitarbeitern vom Institut für Quantenelektronik der ETH Zürich ist es nun gelungen, in einer kombinierten experimentellen und theoretischen Studie ein neues Puzzleteil zu finden, das zudem ein bisher falsch platziertes Teil an die richtige Stelle rückt.

Exzitonen und Polaronen

In Festkörpern bilden sich Quasiteilchen beispielsweise, wenn ein Lichtteilchen absorbiert wird. Die Bewegungsenergie von Elektronen, die sich in einem Festkörper tummeln, kann nur Werte annehmen, die sich in fest umgrenzten, als Bänder bezeichneten Bereichen befinden. Ein Lichtteilchen kann nun ein Elektron aus einem niedrigen in ein höheres Energieband befördern, wobei es im niedrigen Band ein «Loch» hinterlässt.

Das angeregte Elektron und das entstandene Loch ziehen sich durch die elektrostatische Coulomb-Kraft gegenseitig an, und wenn diese Anziehung stark genug ist, kann man das Elektron-Loch-Paar als Quasiteilchen betrachten – ein «Exziton» ist geboren. Binden sich dagegen zwei Elektronen und ein Loch aneinander, so bildet sich ein Trion. Befinden sich aber gleichzeitig Exzitonen und eine grosse Zahl von freien Elektronen im Material, so braucht man zur Beschreibung seiner qualitativ neuen – oder «emergenten» – Eigenschaften ein neues, Fermi-Polaron genanntes Quasiteilchen.

Quasiteilchen im Halbleiter

Imamoğlu und seine Kollegen wollten nun die Eigenschaften von Quasiteilchen studieren, die in einem bestimmten Typ von Halbleiter vorkommen, in dem sich Elektronen nur in zwei Dimensionen bewegen können. Dazu nahmen sie eine einzelne, nur einen Tausendstel Mikrometer dünne Schicht aus Molybdän-Diselenid, die zwischen zwei Bornitrid-Scheiben eingebettet war. Dem fügten sie eine Graphenschicht hinzu, um damit eine elektrische Spannung anzulegen, mit deren Hilfe die Dichte der Elektronen im Material gesteuert werden konnte. Schliesslich wurde die Anordnung zwischen zwei Mikro-Spiegel gepackt, die zusammen einen optischen Resonator bildeten.

Mit dieser komplexen Versuchsanordnung konnten die Zürcher Physiker nun im Detail studieren, wie stark das Material unter verschiedenen Bedingungen Licht absorbiert. Dabei fanden sie heraus, dass sich bei optischer Anregung in der Halbleiterstruktur Fermi-Polaronen bilden und nicht, wie bisher angenommen, Exzitonen oder Trionen. «Die damals verfügbaren Daten dazu wurden bisher von der Forschung – meine eigene eingeschlossen – immer falsch interpretiert», gibt Imamoğlu zu. «Mit unserem neuen Experiment haben wir nun das bisher gültige Bild zurechtgerückt.»

Teamleistung mit Gastforscher

«Das Ganze war eine Teamleistung, an der Harvard-Professor Eugene Demler massgeblich beteiligt war. Er hat als ITS-Fellow mehrere Monate mit uns zusammengearbeitet», sagt Meinrad Sidler, Doktorand in Imamoğlus Gruppe. Das Institute for Theoretical Studies (ITS) der ETH macht es sich seit 2013 zur Aufgabe, interdisziplinäre Forschung an der Schnittstelle von Mathematik, theoretischer Physik und Informatik zu fördern. Vor allem auf reiner wissenschaftlicher Neugier basierende Forschung soll so erleichtert werden, mit dem Ziel, die besten Ideen an unerwarteten Orten zu finden.

In der nun in der Fachzeitschrift «Nature Physics» veröffentlichen Studie von Imamoğlu und Kollegen hat dieses Prinzip jedenfalls schon gefruchtet. Eugene Demler befasst sich in seiner Forschung nämlich eigentlich mit ultrakalten Atomen und untersucht, wie sich Mischungen aus bosonischen und fermionischen Atomen verhalten. «Durch sein Verständnis von Polaronen in atomaren Gasen und Festkörpern hat Demler unserer Forschung wichtige und interessante Impulse gegeben, auf die wir von alleine wohl nicht gekommen wären», sagt Imamoğlu.

Lichtinduzierte Supraleitung

Die jetzt gewonnenen Erkenntnisse werden Imamoğlu und seine Mitarbeiter noch eine Zeit lang beschäftigen, denn eben um das Zusammenspiel bosonischer (zum Beispiel Exzitonen) und fermionischer Teilchen (Elektronen) geht es in einem grossen Forschungsprojekt, für das Imamoğlu letztes Jahr einen Advanced Grant des European Research Council (ERC) gewonnen hat und das auch vom Nationalen Forschungsschwerpunkt Quantenwissenschaften und -technologie (NFS QSIT)
gefördert wird. Ein besseres Verständnis solcher Mischungen von Quasiteilchen hätte einerseits wichtige Auswirkungen auf die Grundlagenforschung, anderseits winken aber auch spannende Anwendungen. So ist es beispielsweise ein zentrales Ziel des ERC-Projekts zu zeigen, wie Supraleitung mit Hilfe von Laserlicht kontrolliert werden kann.

Literaturhinweis

Sidler M, Back P, Cotlet O, Srivastava A, Fink T, Kroner M, Demler E, Imamoglu A: Fermi polaron-polaritons in charge-tunable atomically thin semiconductors. Nature Physics, 31. Oktober 2016, doi: 10.1038/nphys3949 [http://dx.doi.org/10.1038/nphys3949]

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2016/10/den-quasit...

Hochschulkommunikation | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher verwandeln Diamant in Graphit
24.11.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Proton-Rekord: Magnetisches Moment mit höchster Genauigkeit gemessen
24.11.2017 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Proton-Rekord: Magnetisches Moment mit höchster Genauigkeit gemessen

Hochpräzise Messung des g-Faktors elf Mal genauer als bisher – Ergebnisse zeigen große Übereinstimmung zwischen Protonen und Antiprotonen

Das magnetische Moment eines einzelnen Protons ist unvorstellbar klein, aber es kann dennoch gemessen werden. Vor über zehn Jahren wurde für diese Messung der...

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Reibungswärme treibt hydrothermale Aktivität auf Enceladus an

Computersimulation zeigt, wie der Eismond Wasser in einem porösen Gesteinskern aufheizt

Wärme aus der Reibung von Gestein, ausgelöst durch starke Gezeitenkräfte, könnte der „Motor“ für die hydrothermale Aktivität auf dem Saturnmond Enceladus sein....

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kinderanästhesie aktuell: Symposium für Ärzte und Pflegekräfte

23.11.2017 | Veranstaltungen

IfBB bei 12th European Bioplastics Conference mit dabei: neue Marktzahlen, neue Forschungsthemen

22.11.2017 | Veranstaltungen

Zahnimplantate: Forschungsergebnisse und ihre Konsequenzen – 31. Kongress der DGI

22.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher verwandeln Diamant in Graphit

24.11.2017 | Physik Astronomie

Dinner in the Dark – ein delikates Wechselspiel der Mikroorganismen

24.11.2017 | Biowissenschaften Chemie

Proton-Rekord: Magnetisches Moment mit höchster Genauigkeit gemessen

24.11.2017 | Physik Astronomie