Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Den Ouzo-Effekt unter die Lupe genommen

26.07.2016

Forscher unter der Federführung des deutschen Wissenschaftlers Prof. Dr. Detlef Lohse von der University of Twente gewinnen erstaunliche Erkenntnisse, die beispielsweise für die medizinische Diagnostik oder bei der Entwicklung von Biotreibstoffen nützlich sind.

Ein Ouzo oder ein Pastis runden einen geselligen Abend im Café oder Restaurant ab. Doch ist ein Gläschen Ouzo auch für eine echte Überraschung gut: Wer Wasser dazugibt, staunt, dass das Getränk unvermittelt milchig wird. Besser bekannt ist der Vorgang als „Ouzo-Effekt“.


Die vier Phasen des Ouzo-Effektes

University of Twente

Von daher drängt sich die Frage auf: Was geschieht eigentlich in einem Tröpfchen Ouzo? Forscher der Physics of Fluids Gruppe von der University of Twente (MESA+ Institut) und der Technischen Universität Eindhoven (TU/e) haben den Prozess detailliert untersucht:

Sie unterscheiden vier Phasen, die in weniger als einer Viertelstunde ablaufen. Damit ließen die Forscher unter der Federführung von Prof. Dr. Detlef Lohse von der University of Twente die Wissenschaftswelt aufhorchen: Ihre Erkenntnisse wurden nun im führenden Wissenschaftsjournal „Proceedings of the National Academy of Sciences of the USA“ (PNAS) veröffentlicht.

Ouzo ist ein klares Getränk, das sich aus den Bestandteilen Wasser, Alkohol und Anisöl zusammensetzt. In diesem Gemisch von Alkohol und Wasser variiert die Löslichkeit von Anisöl: Wird Wasser hinzugeschüttet, nimmt die Löslichkeit des Anisöls ab. Die Folge: Das Anisöl bildet in der Flüssigkeit Nanotröpfchen, die bis zu größeren Mikrotröpfchen anwachsen. Die Tröpfchen zerstreuen das Licht: Die Flüssigkeit verliert ihre Transparenz, wird milchig. Der Ouzo-Effekt eben.

Ouzo-Effekt beginnt am Rand des Tropfens

Untersucht werden kann die Wirkung auch, wenn man bei Zimmertemperatur ein Tröpfchen Ouzo auf eine wasserabweisende Oberfläche verdampfen lässt. Zunächst ist die Flüssigkeit wie gewohnt transparent. Als erstes beginnt Alkohol zu verdampfen, und zwar vorrangig am Rand des Tropfens, so dass dort die Alkoholkonzentration zurückgeht.

Hier beginnt der Ouzo-Effekt daher zuerst. Im gesamten Tropfen kommt es zu einer Strömung. Sie wird durch Unterschiede in der Oberflächenspannung verursacht, die eine Konvektion zur Folge haben. Durch diese Strömung wird innerhalb kurzer Zeit der ganze Tropfen milchig: Der Ouzo-Effekt, der am Rand begann, hat sich komplett ausgeweitet. Bis dahin besitzt der Tropfen aber noch die zu erwartende Kugelkappenform.

Vier Phasen in 15 Minuten

Das ändert sich jedoch, wenn sich das Anisöl zur Grenzfläche hin bewegt und eine Ecke bildet mit der Kugelkappenform des Tropfens und der Oberfläche. Die Anisöltropfen verschmelzen und bilden einen Ring aus Anisöl am Außenrand des Tropfens. Nach einer gewissen Zeit ist der Alkohol vollständig verdampft und die Flüssigkeit wird wieder transparent.

Der Rest des Wassers verdampft ebenfalls, wobei der Anisölring von außen nach innen anwächst – bis schließlich ein kleiner Tropfen Anisöl übrig ist. Die insgesamt vier Lebensphasen vollziehen sich innerhalb einer Viertelstunde.

Die ersten zwei Phasen mit allen komplexen Phänomenen, die hierbei im Tropfen auftreten, dauern am kürzesten: Innerhalb von ungefähr zwei Minuten verdampft der Alkohol. Beginnt die schnelle Strömung, tritt der Ouzo-Effekt auf und der Tropfen fängt an, durch den Anisölring seine Form zu verändern. Die restliche Verdampfung – bis zu dem Moment, in dem nur noch Anisöl übrig ist – dauert zwölf Minuten.

Die Liquid-liquid-Extraktion

Die Erkenntnisse aus der Trennung der drei unterschiedlichen Bestandteile des Tropfens ermöglichen es in der Praxis, einen der Stoffe gezielt über eine Liquid-liquid-Extraktion zu sondieren. Durch die präzise Beobachtung der vier Phasen lassen sich die günstigsten Bedingungen für eine effektive Extraktion finden. Auch kann der Prozess beeinflusst werden, indem die Oberfläche durch Wasserabweichung lokal variiert wird.

Als Anwendung bietet sich unter anderem die medizinische Diagnostik an. Ein entsprechender Prozess könnte auf diese Weise verlaufen: Man nehme einen Stoff A, der in kleiner Menge in Wasser gelöst ist. Dann wird ein Tropfen Öl in das Wasser gehängt, in dem sich der Stoff A besser löst: A diffundiert zum Tropfen hin. Es stellt sich die Frage, wie dies nun optimiert werden kann, so dass möglichst viel von A herausgeholt und die Konzentration im Anisöl möglichst groß wird. Ein Beispiel: A ist ein Dopingmittel, ein Medikament oder ein Giftstoff, die nun mit Chromatographie nachzuweisen sind.

Anwendung in der Energietechnologie

Die Untersuchung erlaubt beispielsweise auch mehr Einsicht in Inkjet- oder 3D-Drucktechniken, die komplexe Flüssigkeitsmischungen verwenden.

Außerdem bietet die Untersuchung neue Einblicke in das Verhalten von Flüssigkeiten, die für neue Energietechnologien und die hierfür erforderlichen Katalysatoren benötigt werden. Hier wird auch das Liquid-liquid-Extraktionsverfahren angewendet, zum Beispiel bei Biobrennstoffen (biofuels). Es kommt zu einer Trennung in verschiedene Komponenten. Ferner werden bei der Katalyse (poröse) Katalysatoren durch trocknende Tropfen mit Nano- oder Mikroteilchen „gebaut“.

Von daher ist es auch nachliegend, dass sich die Gruppe Physics of Fluids an dem landesweiten Projekt „Multiscale Catalytic Energy Conversion“ (MCEC) beteiligt.

Beitrag eines ganzen Forscherteams

Der Beitrag „Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo drop“ von Huanshu Tan, Christian Diddens, Pengyu Lyu, Hans Kürten, Xuehua Zhang und Detlef Lohse erschien im Juli 2016 in der „Proceedings of the National Academy of Sciences of the United States of America”.

Info-Box:

Prof. Dr. Lohse:

Preisträger und MPG-Mitglied

Prof. Dr. Detlef Lohse leitet die Physics of Fluids Gruppe am MESA+-Institut der niederländischen University of Twente. Der deutsche Physiker und Strömungsforscher, seit 1998 in Diensten der Universität in Enschede, ist seit etwas mehr als einem Jahr auch auswärtiges wissenschaftliches Mitglied des Max-Planck-Instituts für Dynamik und Selbstorganisation (MPIDS) in Göttingen und Mitglied der Max-Planck Gesellschaft (MPG). Lohse erhielt 2012 den George K. Batechelor Prize, der als Nobelpreis in der Fluidforschung gilt. Außerdem wurde ihm der Spinoza-Preis verliehen, der mit dem deutschen Gottfried Wilhelm Leibniz-Preis vergleichbar ist.

Adresse:
University of Twente
Drienerlolaan 5
7522 NB Enschede

Alf Buddenberg | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: Energy Conversion Katalysatoren Lupe Physics of Fluids Strömung Tropfen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher verwandeln Diamant in Graphit
24.11.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Proton-Rekord: Magnetisches Moment mit höchster Genauigkeit gemessen
24.11.2017 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Metamaterial mit Dreheffekt

Mit 3D-Druckern für den Mikrobereich ist es Forschern des Karlsruher Instituts für Technologie (KIT) gelungen ein Metamaterial aus würfelförmigen Bausteinen zu schaffen, das auf Druckkräfte mit einer Rotation antwortet. Üblicherweise gelingt dies nur mit Hilfe einer Übersetzung wie zum Beispiel einer Kurbelwelle. Das ausgeklügelte Design aus Streben und Ringstrukturen, sowie die zu Grunde liegende Mathematik stellen die Wissenschaftler in der aktuellen Ausgabe der renommierten Fachzeitschrift Science vor.

„Übt man Kraft von oben auf einen Materialblock aus, dann deformiert sich dieser in unterschiedlicher Weise. Er kann sich ausbuchten, zusammenstauchen oder...

Im Focus: Proton-Rekord: Magnetisches Moment mit höchster Genauigkeit gemessen

Hochpräzise Messung des g-Faktors elf Mal genauer als bisher – Ergebnisse zeigen große Übereinstimmung zwischen Protonen und Antiprotonen

Das magnetische Moment eines einzelnen Protons ist unvorstellbar klein, aber es kann dennoch gemessen werden. Vor über zehn Jahren wurde für diese Messung der...

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Reibungswärme treibt hydrothermale Aktivität auf Enceladus an

Computersimulation zeigt, wie der Eismond Wasser in einem porösen Gesteinskern aufheizt

Wärme aus der Reibung von Gestein, ausgelöst durch starke Gezeitenkräfte, könnte der „Motor“ für die hydrothermale Aktivität auf dem Saturnmond Enceladus sein....

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mathematiker-Jahrestagung DMV + GDM: 5. bis 9. März 2018 an Uni Paderborn - Über 1.000 Teilnehmer

24.11.2017 | Veranstaltungen

Forschungsschwerpunkt „Smarte Systeme für Mensch und Maschine“ gegründet

24.11.2017 | Veranstaltungen

Schonender Hüftgelenkersatz bei jungen Patienten - Schlüssellochchirurgie und weniger Abrieb

24.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mathematiker-Jahrestagung DMV + GDM: 5. bis 9. März 2018 an Uni Paderborn - Über 1.000 Teilnehmer

24.11.2017 | Veranstaltungsnachrichten

Maschinen über die eigene Handfläche steuern: Nachwuchspreis für Medieninformatik-Student

24.11.2017 | Förderungen Preise

Treibjagd in der Petrischale

24.11.2017 | Biowissenschaften Chemie