Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Den Ouzo-Effekt unter die Lupe genommen

26.07.2016

Forscher unter der Federführung des deutschen Wissenschaftlers Prof. Dr. Detlef Lohse von der University of Twente gewinnen erstaunliche Erkenntnisse, die beispielsweise für die medizinische Diagnostik oder bei der Entwicklung von Biotreibstoffen nützlich sind.

Ein Ouzo oder ein Pastis runden einen geselligen Abend im Café oder Restaurant ab. Doch ist ein Gläschen Ouzo auch für eine echte Überraschung gut: Wer Wasser dazugibt, staunt, dass das Getränk unvermittelt milchig wird. Besser bekannt ist der Vorgang als „Ouzo-Effekt“.


Die vier Phasen des Ouzo-Effektes

University of Twente

Von daher drängt sich die Frage auf: Was geschieht eigentlich in einem Tröpfchen Ouzo? Forscher der Physics of Fluids Gruppe von der University of Twente (MESA+ Institut) und der Technischen Universität Eindhoven (TU/e) haben den Prozess detailliert untersucht:

Sie unterscheiden vier Phasen, die in weniger als einer Viertelstunde ablaufen. Damit ließen die Forscher unter der Federführung von Prof. Dr. Detlef Lohse von der University of Twente die Wissenschaftswelt aufhorchen: Ihre Erkenntnisse wurden nun im führenden Wissenschaftsjournal „Proceedings of the National Academy of Sciences of the USA“ (PNAS) veröffentlicht.

Ouzo ist ein klares Getränk, das sich aus den Bestandteilen Wasser, Alkohol und Anisöl zusammensetzt. In diesem Gemisch von Alkohol und Wasser variiert die Löslichkeit von Anisöl: Wird Wasser hinzugeschüttet, nimmt die Löslichkeit des Anisöls ab. Die Folge: Das Anisöl bildet in der Flüssigkeit Nanotröpfchen, die bis zu größeren Mikrotröpfchen anwachsen. Die Tröpfchen zerstreuen das Licht: Die Flüssigkeit verliert ihre Transparenz, wird milchig. Der Ouzo-Effekt eben.

Ouzo-Effekt beginnt am Rand des Tropfens

Untersucht werden kann die Wirkung auch, wenn man bei Zimmertemperatur ein Tröpfchen Ouzo auf eine wasserabweisende Oberfläche verdampfen lässt. Zunächst ist die Flüssigkeit wie gewohnt transparent. Als erstes beginnt Alkohol zu verdampfen, und zwar vorrangig am Rand des Tropfens, so dass dort die Alkoholkonzentration zurückgeht.

Hier beginnt der Ouzo-Effekt daher zuerst. Im gesamten Tropfen kommt es zu einer Strömung. Sie wird durch Unterschiede in der Oberflächenspannung verursacht, die eine Konvektion zur Folge haben. Durch diese Strömung wird innerhalb kurzer Zeit der ganze Tropfen milchig: Der Ouzo-Effekt, der am Rand begann, hat sich komplett ausgeweitet. Bis dahin besitzt der Tropfen aber noch die zu erwartende Kugelkappenform.

Vier Phasen in 15 Minuten

Das ändert sich jedoch, wenn sich das Anisöl zur Grenzfläche hin bewegt und eine Ecke bildet mit der Kugelkappenform des Tropfens und der Oberfläche. Die Anisöltropfen verschmelzen und bilden einen Ring aus Anisöl am Außenrand des Tropfens. Nach einer gewissen Zeit ist der Alkohol vollständig verdampft und die Flüssigkeit wird wieder transparent.

Der Rest des Wassers verdampft ebenfalls, wobei der Anisölring von außen nach innen anwächst – bis schließlich ein kleiner Tropfen Anisöl übrig ist. Die insgesamt vier Lebensphasen vollziehen sich innerhalb einer Viertelstunde.

Die ersten zwei Phasen mit allen komplexen Phänomenen, die hierbei im Tropfen auftreten, dauern am kürzesten: Innerhalb von ungefähr zwei Minuten verdampft der Alkohol. Beginnt die schnelle Strömung, tritt der Ouzo-Effekt auf und der Tropfen fängt an, durch den Anisölring seine Form zu verändern. Die restliche Verdampfung – bis zu dem Moment, in dem nur noch Anisöl übrig ist – dauert zwölf Minuten.

Die Liquid-liquid-Extraktion

Die Erkenntnisse aus der Trennung der drei unterschiedlichen Bestandteile des Tropfens ermöglichen es in der Praxis, einen der Stoffe gezielt über eine Liquid-liquid-Extraktion zu sondieren. Durch die präzise Beobachtung der vier Phasen lassen sich die günstigsten Bedingungen für eine effektive Extraktion finden. Auch kann der Prozess beeinflusst werden, indem die Oberfläche durch Wasserabweichung lokal variiert wird.

Als Anwendung bietet sich unter anderem die medizinische Diagnostik an. Ein entsprechender Prozess könnte auf diese Weise verlaufen: Man nehme einen Stoff A, der in kleiner Menge in Wasser gelöst ist. Dann wird ein Tropfen Öl in das Wasser gehängt, in dem sich der Stoff A besser löst: A diffundiert zum Tropfen hin. Es stellt sich die Frage, wie dies nun optimiert werden kann, so dass möglichst viel von A herausgeholt und die Konzentration im Anisöl möglichst groß wird. Ein Beispiel: A ist ein Dopingmittel, ein Medikament oder ein Giftstoff, die nun mit Chromatographie nachzuweisen sind.

Anwendung in der Energietechnologie

Die Untersuchung erlaubt beispielsweise auch mehr Einsicht in Inkjet- oder 3D-Drucktechniken, die komplexe Flüssigkeitsmischungen verwenden.

Außerdem bietet die Untersuchung neue Einblicke in das Verhalten von Flüssigkeiten, die für neue Energietechnologien und die hierfür erforderlichen Katalysatoren benötigt werden. Hier wird auch das Liquid-liquid-Extraktionsverfahren angewendet, zum Beispiel bei Biobrennstoffen (biofuels). Es kommt zu einer Trennung in verschiedene Komponenten. Ferner werden bei der Katalyse (poröse) Katalysatoren durch trocknende Tropfen mit Nano- oder Mikroteilchen „gebaut“.

Von daher ist es auch nachliegend, dass sich die Gruppe Physics of Fluids an dem landesweiten Projekt „Multiscale Catalytic Energy Conversion“ (MCEC) beteiligt.

Beitrag eines ganzen Forscherteams

Der Beitrag „Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo drop“ von Huanshu Tan, Christian Diddens, Pengyu Lyu, Hans Kürten, Xuehua Zhang und Detlef Lohse erschien im Juli 2016 in der „Proceedings of the National Academy of Sciences of the United States of America”.

Info-Box:

Prof. Dr. Lohse:

Preisträger und MPG-Mitglied

Prof. Dr. Detlef Lohse leitet die Physics of Fluids Gruppe am MESA+-Institut der niederländischen University of Twente. Der deutsche Physiker und Strömungsforscher, seit 1998 in Diensten der Universität in Enschede, ist seit etwas mehr als einem Jahr auch auswärtiges wissenschaftliches Mitglied des Max-Planck-Instituts für Dynamik und Selbstorganisation (MPIDS) in Göttingen und Mitglied der Max-Planck Gesellschaft (MPG). Lohse erhielt 2012 den George K. Batechelor Prize, der als Nobelpreis in der Fluidforschung gilt. Außerdem wurde ihm der Spinoza-Preis verliehen, der mit dem deutschen Gottfried Wilhelm Leibniz-Preis vergleichbar ist.

Adresse:
University of Twente
Drienerlolaan 5
7522 NB Enschede

Alf Buddenberg | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: Energy Conversion Katalysatoren Lupe Physics of Fluids Strömung Tropfen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Berner Mars-Kamera liefert erste farbige Bilder vom Mars
26.04.2018 | Universität Bern

nachricht Belle II misst die ersten Teilchenkollisionen
26.04.2018 | Max-Planck-Institut für Physik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

Das Kleben der Zellverbinder von Hocheffizienz-Solarzellen im industriellen Maßstab ist laut dem Fraunhofer-Institut für Solare Energiesysteme ISE und dem Anlagenhersteller teamtechnik marktreif. Als Ergebnis des gemeinsamen Forschungsprojekts »KleVer« ist die Klebetechnologie inzwischen so weit ausgereift, dass sie als alternative Verschaltungstechnologie zum weit verbreiteten Weichlöten angewendet werden kann. Durch die im Vergleich zum Löten wesentlich niedrigeren Prozesstemperaturen können vor allem temperatursensitive Hocheffizienzzellen schonend und materialsparend verschaltet werden.

Dabei ist der Durchsatz in der industriellen Produktion nur geringfügig niedriger als beim Verlöten der Zellen. Die Zuverlässigkeit der Klebeverbindung wurde...

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Konferenz »Encoding Cultures. Leben mit intelligenten Maschinen« | 27. & 28.04.2018 ZKM | Karlsruhe

26.04.2018 | Veranstaltungen

Konferenz zur Marktentwicklung von Gigabitnetzen in Deutschland

26.04.2018 | Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Weltrekord an der Uni Paderborn: Optische Datenübertragung mit 128 Gigabits pro Sekunde

26.04.2018 | Informationstechnologie

Multifunktionaler Mikroschwimmer transportiert Fracht und zerstört sich selbst

26.04.2018 | Biowissenschaften Chemie

Berner Mars-Kamera liefert erste farbige Bilder vom Mars

26.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics