Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dem Rätsel der Neutronensterne auf der Spur

10.03.2015

Bisher ist es noch nicht gelungen, die von Einsteins Allgemeiner Relativitätstheorie vorhergesagten Gravitationswellen zu messen. Sie sind so schwach, dass sie im Rauschen der Messungen untergehen. Doch Dank neuester Simulationen der Verschmelzung besonders massereicher Neutronen-Doppelstern-Systeme ist jetzt die Struktur der gesuchten Signale bekannt. Wie ein deutsch-japanisches Team Theoretischer Astrophysiker in der aktuellen Ausgabe der Fachzeitschrift „Physical Review D“ berichtet, besitzen Gravitationswellen ein charakteristisches Spektrum, ähnlich den Spektrallinien von Atomen.

Gravitationswellen entstehen bei der Beschleunigung von Massen. Erste indirekte Hinweise auf ihre Existenz gibt es seit 1974, als der Doppelpulsar PSR B1913+16 im Sternbild Adler entdeckt wurde.


Vier Schnappschüsse von der Fusion zweier Neutronen-Sterne. Von der Annäherung bis zur Verschmelzung vergehen nur wenige Millisekunden, in denen ungeheure Massen beschleunigt werden. Die Signale der dabei theoretisch entstehenden Gravitationswellen sind jetzt in Simulationen berechnet worden.

Die beiden schnell umeinander kreisenden Neutronen-Sterne driften spiralförmig aufeinander zu, was Astrophysiker dadurch erklären, dass sie Gravitationsenergie abstrahlen. Russell A. Hulse und Joseph H. Taylor erhielten für diese Entdeckung 1993 den Nobelpreis für Physik.

Inzwischen gibt es mehrere großangelegte Experimente zur Detektion von Gravitationswellen: das US-amerikanische LIGO-Experiment, das europäische Virgo-Experiment und den japanischen KAGRA-Detektor. Fachleute rechnen damit, innerhalb der nächsten fünf Jahre Signale von Gravitationswellen aus fusionierenden Neutronen-Doppelstern-Systemen aufzuspüren.

“Diese Signale zu entdecken wird nicht einfach sein, weil sie eine extreme kleine Amplitude haben. Aber trotz dieser erschwerten Bedingungen ist es möglich, sie zu finden, wenn sie im Voraus bekannt sind“, erklärt Prof. Luciano Rezzolla vom Institut für Theoretische Physik der Goethe-Universität.

Gemeinsam mit einem japanischen Kollegen von der Universität Osaka hat er eine Reihe von Neutronen-Doppelstern-Systemen mithilfe von neuesten Simulationstechniken untersucht und herausgefunden, dass beim Verschmelzen der Sterne charakteristische Gravitationswellen-Spektren entstehen.

„Diese Spektren entsprechend den elektromagnetischen Spektrallinien, die von Atomen oder Molekülen emittiert werden. Wir können daraus Informationen über die Eigenschaften der Sterne gewinnen“, erklärt Rezzolla.

Wie die Astrophysiker in zwei inhaltlich zusammen gehörenden Publikationen in "Physical Review Letters“ (erschienen im November 2014) und in der aktuellen Ausgabe von „Physical Review D“ zeigen, ist das Spektrum der Gravitationswellen wie ein Fingerabdruck der beiden Sterne. Lernt man, ihn zu interpretieren, weiß man, woraus die Sterne bestehen und kann ihre bisher noch unbekannte Zustandsgleichung aufstellen.

Zustandsgleichungen beschreiben die thermodynamischen Eigenschaften von Systemen in Abhängigkeit von Größen wie Druck, Temperatur, Volumen oder Teilchenzahl. Dazu Rezzolla: „Das ist eine sehr aufregende Möglichkeit, denn wir könnten damit ein seit 40 Jahren ungelöstes Rätsel lösen: Woraus bestehen Neutronen-Sterne und was ist ihre stellare Struktur?“

“Wenn das Signal stark und damit der Fingerabdruck sehr deutlich wäre, würde sogar eine einzige Messung ausreichen”, schätzt Rezzolla. „Die Aussichten, das Rätsel der Neutronensterne zu lösen, waren nie so gut. Schon jetzt sind die Gravitationswellen, die wir hoffentlich in einigen Jahren entdecken werden, von den entferntesten Enden des Universums zu uns unterwegs.“

Publikation:
K. Takami, L. Rezzolla, and L. Baiotti, Constraining the Equation of State of Neutron Stars from Binary Merger, Phys. Rev. Lett. 113, 091104 (2014).
DOI: 10.1103/PhysRevLett.113.091104

K. Takami, L. Rezzolla, and L. Baiotti, Spectral properties of the post-merger gravitational-wave signal from binary neutron stars, Phys. Rev. D. 113, 091104 (2015), 2. März 2015.

Informationen: Prof. Luciano Rezzolla, Institut für Theoretische Physik, Campus Riedberg, Tel.: (069) 798-47871, rezzolla@th.physik.uni-frankfurt.de.

Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. 1914 gegründet mit rein privaten Mitteln von freiheitlich orientierten Frankfurter Bürgerinnen und Bürgern fühlt sie sich als Bürgeruniversität bis heute dem Motto "Wissenschaft für die Gesellschaft" in Forschung und Lehre verpflichtet. Viele der Frauen und Männer der ersten Stunde waren jüdische Stifter. In den letzten 100 Jahren hat die Goethe-Universität Pionierleistungen erbracht auf den Feldern der Sozial-, Gesellschafts- und Wirtschaftswissenschaften, Chemie, Quantenphysik, Hirnforschung und Arbeitsrecht. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Heute ist sie eine der zehn drittmittelstärksten und drei größten Universitäten Deutschlands mit drei Exzellenzclustern in Medizin, Lebenswissenschaften sowie Geisteswissenschaften."

Herausgeber: Die Präsidentin
Abteilung Marketing und Kommunikation,
60629 Frankfurt am Main
Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation Theodor-W.-Adorno-Platz 1, 60323 Frankfurt am Main Telefon (069) 798 – 1 24 98, Telefax (069) 798 – 763 12531, E-Mail hardy@pvw.uni-frankfurt.de
Internet: www.uni-frankfurt.de

Dr. Anke Sauter | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics