Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dawn erreicht Ceres

09.03.2015

Die Raumsonde wird vom Schwerefeld des Zwergplaneten eingefangen

Um 14.36 Uhr Mitteleuropäischer Zeit ging das Signal in der Bodenstation ein: Dawn wurde vom Schwerefeld des Zwergplaneten Ceres eingefangen – und ist damit das erste Raumschiff in der Geschichte, das nacheinander in eine Umlaufbahn um zwei verschiedene planetare Körper eingetreten ist.


Abschied auf Zeit: Die letzten Aufnahmen vor dem Einfang der Raumsonde Dawn zeigen den Zwergplaneten Ceres als schmale Sichel. Die Bilder entstanden am 2. März 2015 aus einer Entfernung von 49.000 Kilometern. Erst Mitte April wir Dawn die nächsten Aufnahmen zur Erde senden.

© NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Bereits 2011 hatte Dawn den Asteroiden Vesta erreicht und ihn mehr als ein Jahr lang umrundet. Für die Wissenschaftler am Max-Planck-Institut für Sonnensystemforschung in Göttingen beginnt nun die heiße Phase der Mission. Mithilfe ihres Kamerasystems an Bord wollen sie unter anderem Farbkarten von Ceres erstellen – und so möglicherweise dem Eis des Zwergplaneten auf die Schliche kommen.

Für ihre Expedition in den Asteroidengürtel zwischen den Umlaufbahnen von Mars und Jupiter ist die US-amerikanische Raumsonde Dawn bestens ausgestattet: Gleich drei wissenschaftliche Instrumente sollen dem Zwergplaneten Ceres seine Geheimnisse entlocken. Neben einem Detektorsystem für Gammastrahlen und Neutronen sowie einem Infrarot-Spektrometer zählt dazu auch ein Kamerasystem, das unter Leitung des Göttinger Max-Planck-Instituts für Sonnensystemforschung entwickelt wurde.

Bereits in der Anflugphase während der vergangenen Monate lieferte das Kamerasystem erste Ansichten des Zwergplaneten. In den nächsten Wochen soll das Fotoshooting erst richtig losgehen: Mindestens 10.000 Aufnahmen, die zum Teil Strukturen von nur 40 Meter Größe sichtbar machen, wollen die Wissenschaftler schießen.

„Wir haben in den nächsten anderthalb Jahren viel zu tun, aber wir haben die notwendigen Ressourcen und einen robusten Zeitplan, um unsere wissenschaftlichen Ziele zu erreichen“, sagt Chris Russell von der University of California in Los Angeles (USA), wissenschaftlicher Leiter der Mission. Und: „Wir sind sehr aufgeregt und voller Vorfreude.“

Zu den Zielen der Mission gehört es, den Zwergplaneten genau zu kartografieren. Zudem ist das Kamerasystem mit sieben Farbfiltern ausgestattet. Sie erlauben es, bestimmte Wellenlängenbereiche aus dem Licht, das Ceres in All reflektiert, herauszufiltern und so die charakteristischen Fingerabdrücke bestimmter Stoffe aufzuspüren. Die Forscher können damit die mineralogische Zusammensetzung der Oberfläche bestimmen und in Farbkarten darstellen.

„Viele dieser mineralogischen Unterschiede sind mit dem bloßen Auge nicht zu sehen“, sagt Andreas Nathues vom Max-Planck-Institut für Sonnensystemforschung, wissenschaftlicher Leiter des Kamerateams. „Die Farbkarten erzählen deshalb Ceres‘ wahre Geschichte und enthalten Informationen über ihre Entstehung und Evolution, die in rein topografischen Karten nicht enthalten sind.“

Im Fall des Asteroiden Vesta, des ersten Ziels der Dawn-Mission, konnten solche mineralogischen Untersuchungen etwa helfen, die innere Struktur des Körpers aufzuklären. Die Farbkarten hatten gezeigt, dass das Mineral Olivin – ein typischer Bestandteil des inneren Gesteinsmantels vieler Planeten – allein in der Nähe kleinerer Einschlagskrater auftritt und somit von außen eingetragen wurde. Es entstammt nicht Vestas eigenem Mantel. Dieser muss somit unter einer mindestens 30 bis 80 Kilometer dicken Gesteinskruste liegen – deutlich tiefer als bisher angenommen.

Für Ceres erwarten die Forscher schwächere Farbkontraste als für Vesta. Dennoch sollte es mittels der Farbkarten gelingen, dem Eis, das unter der Oberfläche des Zwergplaneten vermutet wird, auf die Spur zu kommen.

Auf die nächsten Bilder von Ceres wird das Team allerdings noch ein paar Wochen warten müssen. Da Dawn von der sonnenabgewandten Seite in eine Umlaufbahn um Ceres eintritt, blickt das Kamerasystem derzeit auf jene Seite, die im Dunkel liegt. Bereits die letzte Aufnahme, die vier Tage vor der heutigen Ankunft entstand, zeigt Ceres nur noch als schmale Sichel. Die nächsten Bilder werden von Mitte April an erwartet.

Die Dawn-Mission wird vom Jet Propulsion Laboratory (JPL) der amerikanischen Weltraumbehörde NASA geleitet. JPL ist eine Abteilung des California Institute of Technology in Pasadena. Die University of California in Los Angeles ist für den wissenschaftlichen Teil der Mission verantwortlich. Das Kamerasystem an Bord der Raumsonde wurde unter Leitung des Max-Planck-Instituts für Sonnensystemforschung in Göttingen in Zusammenarbeit mit dem Institut für Planetenforschung des Deutschen Zentrums für Luft- und Raumfahrt (DLR) in Berlin und dem Institut für Datentechnik und Kommunikationsnetze in Braunschweig entwickelt und gebaut. Das Kamera-Projekt wird finanziell von der Max-Planck-Gesellschaft, dem DLR und NASA/JPL unterstützt.

Ansprechpartner

Dr. Birgit Krummheuer
Presse- und Öffentlichkeitsarbeit

Max-Planck-Institut für Sonnensystemforschung, Göttingen
Telefon: +49 551 384979-462

E-Mail: krummheuer@mps.mpg.de


Dr. Andreas Nathues
Max-Planck-Institut für Sonnensystemforschung, Göttingen
Telefon: +49 551 384979-433

E-Mail: Nathues@mps.mpg.de

Dr. Birgit Krummheuer | Max-Planck-Institut für Sonnensystemforschung, Göttingen
Weitere Informationen:
http://www.mpg.de/9017805/dawn-ceres?filter_order=L&research_topic=

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Max-Planck-Princeton-Partnerschaft in der Fusionsforschung bestätigt
23.11.2017 | Max-Planck-Institut für Plasmaphysik

nachricht Magnetfeld-Sensor Argus „sieht“ Kräfte im Bauteil
23.11.2017 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Reibungswärme treibt hydrothermale Aktivität auf Enceladus an

Computersimulation zeigt, wie der Eismond Wasser in einem porösen Gesteinskern aufheizt

Wärme aus der Reibung von Gestein, ausgelöst durch starke Gezeitenkräfte, könnte der „Motor“ für die hydrothermale Aktivität auf dem Saturnmond Enceladus sein....

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kinderanästhesie aktuell: Symposium für Ärzte und Pflegekräfte

23.11.2017 | Veranstaltungen

IfBB bei 12th European Bioplastics Conference mit dabei: neue Marktzahlen, neue Forschungsthemen

22.11.2017 | Veranstaltungen

Zahnimplantate: Forschungsergebnisse und ihre Konsequenzen – 31. Kongress der DGI

22.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Kinderanästhesie aktuell: Symposium für Ärzte und Pflegekräfte

23.11.2017 | Veranstaltungsnachrichten

Seminar „Leichtbau im Automobil- und Maschinenbau“ im Haus der Technik Berlin am 16. - 17. Januar 2018

23.11.2017 | Seminare Workshops

Biohausbau-Unternehmen Baufritz erhält von „ Capital“ die Auszeichnung „Beste Ausbilder Deutschlands“

23.11.2017 | Unternehmensmeldung