Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Daten am Ende des Tunnels

19.01.2010
Geordnete Spins verbessern Computer-Arbeitsspeicher

Forscher vom Helmholtz-Zentrum Berlin (HZB) und der französischen Grundlagen-forschungsorganisation CNRS, südlich von Paris, steuern erstmals mit elektrischen Feldern eine als "Spin" bezeichnete Eigenschaft von Elektronen so, dass damit Daten dauerhaft gespeichert werden können. Das im Fachjournal Science online publizierte Prinzip könnte nicht nur die Arbeitsspeicher in Computern revolutionieren, sondern auch andere elektronische Bauteile verbessern.

Neuartige Arbeitsspeicher nutzen den so genannten "magnetischen Tunnelwiderstand" TMR (Tunnel Magneto Resistance). Dabei werden zwei dünne Magnetschichten durch einen nur einen Millionstel Millimeter dicken Isolator voneinander getrennt. Obwohl der Isolator eigentlich keine Elektronen durchlässt, können einige der Ladungsträger trotzdem wie durch einen Tunnel auf die andere Seite schlüpfen. Möglich ist dies aufgrund eines Quanteneffekts. Alle Elektronen haben einen Eigendrehimpuls, was Physiker als Spin bezeichnen. Der Spin kann entweder den Zustand "up" oder "down" annehmen. Enthalten beide Magnetschichten eines TMR überwiegend Spins der gleichen Orientierung, tunneln die Elektronen viel leichter als wenn eine Magnetschicht vor allem "up"-Spins und die andere überwiegend "down"-Spins enthält.

Mit solch einem Bauelement, in dem beide Magnetschichten Elektronen mit gleichem Spin haben, kann man einen Speicher herstellen, der ähnlich wie ein herkömmlicher Arbeitsspeicher rasch und oft mit Daten neu beschrieben werden kann.

Derartige auch als MRAM bezeichnete Arbeitsspeicher benötigen zum Schreiben der Daten aber relativ starke Magnetfelder und daher auch viel Energie. Das könnte sich mit der Grundlagenforschung ändern, die CNRS-Forscher Vincent Garcia und Manuel Bibes jetzt im Wissenschaftsmagazin Science vorstellen: Sie haben den Isolator aus einer Bariumtitanat genannten Verbindung hergestellt. HZB-Forscher Sergio Valencia und Florian Kronast haben die chemische Zusammensetzung der beteiligten Mag-netschichten mithilfe der "Röntgenabsorptionsspektroskopie" untersucht.

Mit einem elektrischen Feld können die Wissenschaftler diesen Isolator so schalten, dass er die Spins der Elektronen in den angrenzenden magnetischen Schichten und damit auch das Tunneln beeinflusst. Da die Schaltung im Isolator auch ohne Strom erhalten bleibt, könnte man nach diesem Vorbild zum Beispiel Arbeitsspeicher für PCs bauen, die wenig Energie verbrauchen und trotzdem die Daten dauerhaft speichern.

Artikel in Science, DOI: 10.1126/science.1184028

Ferroelectric control of spin polarization: V. Garcia, M. Bibes, L. Bocher, S. Va-lencia, F. Kronast, A. Crassous, X. Moya, S. Enouz-Vedrenne, A. Gloter, D. Imhoff, C. Deranlot, N. D. Mathur, S. Fusil, K. Bouzehouane and A. Barthélémy

Weitere Informationen:

Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin

Dr. Sergio Valencia Molina
Institut Komplexe Magnetische Materi-alien
Tel.: +49-30-6392-5750
sergio.valencia@helmholtz-berlin.de
Dr. Florian Kronast
Abteilung Magnetisierungsdynamik
Tel.: +49-30-6392-4620
florian.kronast@helmholtz-berlin.de
Pressestelle:
Dr. Ina Helms
Tel.: +49-30-8062-2034
ina.helms@helmholtz-berlin.de

Dr. Ina Helms | idw
Weitere Informationen:
http://www.helmholtz-berlin.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Das anwachsende Ende der Ordnung
27.03.2017 | Universität Konstanz

nachricht In einem Quantenrennen ist jeder Gewinner und Verlierer zugleich
27.03.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

Zweites Symposium 4SMARTS zeigt Potenziale aktiver, intelligenter und adaptiver Systeme

27.03.2017 | Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fließender Übergang zwischen Design und Simulation

27.03.2017 | HANNOVER MESSE

Industrial Data Space macht neue Geschäftsmodelle möglich

27.03.2017 | HANNOVER MESSE

Neue Sicherheitstechnik ermöglicht Teamarbeit

27.03.2017 | HANNOVER MESSE