Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das versteckte Innenleben des Orionnebels

12.05.2016

Im Wechselspiel von Magnetfeldern und Gravitation werden in der Gaswolke neue Sterne geboren

Im All kommen ständig Sonnen zur Welt. Häufig entstehen auch gleich ganze Sternhaufen auf einmal – und zwar in vergleichsweise kurzer Zeit. Um Letzteres zu erklären, schlagen Amelia Stutz und Andrew Gould vom Max-Planck-Institut für Astronomie in Heidelberg einen neuen Mechanismus vor. Dazu untersuchten die Forscher ein Gas- und Staubfilament, zu dem auch der bekannte Orionnebel gehört. Im Prinzip geht Sternentstehung einfach: Man nehme eine sehr kalte Wolke, bestehend aus Wasserstoffgas und etwas Staub und überlasse das System sich selbst. Dann werden im Lauf von einigen Millionen Jahren die hinreichend kalten Regionen unter dem Einfluss ihrer eigenen Schwerkraft kollabieren und neue Sterne bilden.


Kreißsaal der Sonnen: Auf diesen Aufnahmen des Sternentstehungsgebiets Orion A sind das integralförmige Filament, die zwei Sternhaufen oberhalb des Filaments sowie im Süden die Wolke L1641 zu sehen. Das linke Teilbild zeigt eine Dichtekarte aus Daten des Weltraumteleskops Herschel, das rechte eine Infrarotaufnahme des Weltraumteleskops WISE. Das mittlere Foto ist eine Kombination der beiden Bilder.

© A. M. Stutz / MPIA

Die Wirklichkeit ist komplizierter. Insbesondere scheint es zwei Arten der Sternentstehung zu geben. In gewöhnlichen, kleineren Molekülwolken entstehen nur einer oder ein paar Sterne – solange, bis sich das Gas über einen Zeitraum von rund drei Millionen Jahren zerstreut hat. Größere Wolken leben rund zehnfach länger. In ihnen kommen ganze Sternhaufen auf einmal zur Welt und werden sehr massereiche Sonnen geboren.

Woran liegt es, dass während dieser rund 30 Millionen Jahre so viele Sterne entstehen? Denn astronomisch gesehen ist der genannte Zeitraum recht kurz. Die meisten Erklärungsansätze gehen von einer Art Kettenreaktion aus, in der die Entstehung der ersten Sterne in der Wolke die Bildung weiterer Sterne auslöst. Dafür kommen etwa die Supernovaexplosionen der massereichsten (und daher kurzlebigsten) gerade entstandenen Sonnen infrage, denn deren Druckwellen komprimieren das Wolkenmaterial und schaffen dadurch die Keime für neue Sterne. 

Amelia Stutz und Andrew Gould vom Max-Planck-Institut für Astronomie in Heidelberg verfolgen einen anderen Ansatz und bringen Schwerkraft und Magnetfelder ins Spiel. Dazu haben sie die Region um den 1300 Lichtjahre entfernten Orionnebel unter die Lupe genommen. Die hellrote, komplex gemusterte Gaswolke zählt zu den bekanntesten Objekten am Himmel.

Ausgangspunkt für die Überlegungen von Stutz und Gould sind Karten der Massenverteilung in einer Struktur, die wegen ihrer Gestalt – sie ähnelt jener des geschwungenen Integralzeichens – den Namen „integralförmiges Filament“ trägt und zu der auch der Orionnebel im mittleren Abschnitt des Filaments gehört. Die Heidelberger Forscher zogen außerdem Studien zu den Magnetfeldern in und um dieses Objekt heran.

Die Daten zeigen, dass der Einfluss von Magnetfeldern und Gravitation auf das Filament ungefähr gleich groß ist. Darauf aufbauend entwickelten die beiden Astronomen ein Szenario, in dem das Filament ein flexibles, hin und her schwingendes Gebilde ist. Die üblichen Modelle der Sternentstehung hingegen legen Gaswolken zugrunde, die unter ihrer eigenen Schwerkraft kollabieren.

Wichtiger Beleg für das neue Bild ist die Verteilung von Protosternen und von jungen Sonnen in und um das Filament. Protosterne sind die Vorstufen von Sonnen: Sie ziehen sich noch weiter zusammen, bis ihre Kernregionen genügend hohe Dichten und Temperaturen erreicht haben, so dass dort im großen Stil Kernfusionsreaktionen einsetzen können. Jetzt erst ist der Stern geboren.

Protosterne sind leicht genug, um mitgenommen zu werden, wenn das Filament hin und her schwingt. Junge Sterne sind dagegen deutlich kompakter und werden vom Filament schlicht zurückgelassen oder wie aus einer Steinschleuder in den umgebenden Raum katapultiert. So kann das Modell erklären, was die Beobachtungsdaten in der Tat zeigen: Dass sich die Protosterne nur entlang des dichten Rückgrats des Filaments finden, junge Sterne dagegen vor allem außerhalb des Filaments.

Dieses Szenario birgt das Potenzial für einen neuen Mechanismus, der die Entstehung ganzer Sternhaufen auf (astronomisch gesehen) kurzen Zeitskalen erklären könnte. Die beobachteten Positionen der Sternhaufen legen nahe, dass das integralförmige Filament ursprünglich in nördliche Richtung deutlich weiter ausgedehnt war als heute. Über Millionen von Jahren scheint sich dann von Norden aus ein Sternhaufen nach dem anderen gebildet zu haben. Und jeder fertige Sternhaufen hat das ihn umgebende Gas-Staub-Gemisch mit der Zeit zerstreut.

Daher sehen wir heute drei Sternhaufen in und um das Filament: Der älteste Haufen ist am weitesten von der Nordspitze des Filaments entfernt; der zweite liegt näher und wird noch von Filamentresten umrankt; der dritte, mitten im integralförmigen Filament, ist gerade im Wachsen begriffen.

Das Wechselspiel von Magnetfeldern und Schwerkraft ermöglicht bestimmte Arten von Instabilitäten, die man zum Teil aus der Plasmaphysik kennt und die einen Sternhaufen nach dem anderen entstehen lassen könnten. Diese Hypothese beruht auf Beobachtungsdaten für das integralförmige Filament. Es handelt sich aber nicht um ein ausgereiftes Modell für einen neuen Modus der Sternentstehung. Zunächst müssten Theoretiker entsprechende Simulationen durchführen und Astronomen weitere Beobachtungen vornehmen.

Erst nach diesen Vorarbeiten wird sich herausstellen, ob die Molekülwolke im Orion einen Sonderfall darstellt. Oder ob die Geburt von Sternhaufen in einem Reigen magnetisch eingeschlossener Filamente der übliche Weg ist, um im Weltall innerhalb kurzer Zeit ganze Haufen neuer Sterne entstehen zu lassen.

Ansprechpartner

Dr. Markus Pössel

Öffentlichkeitsarbeit
Telefon:+49 6221 528-261Fax:+49 6221 528-246
E-Mail:pr@mpia.de
 

Dr. Amelia Stutz

Telefon:+49 6221 528-412
 

Dr. Andrew Gould

Telefon:+49 6221 528-464

Originalpublikation

Amelia M. Stutz, Andrew Gould

Slingshot Mechanism in Orion: Kinematic Evidence for Ejection of Protostars by Filaments

Dr. Markus Pössel | Max-Planck-Institut für Astronomie, Heidelberg

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Drei Generationen an Sternen unter einem Dach
27.07.2017 | ESO Science Outreach Network - Haus der Astronomie

nachricht Physiker designen ultrascharfe Pulse
27.07.2017 | Universität Innsbruck

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Basis für neue medikamentöse Therapie bei Demenz

27.07.2017 | Biowissenschaften Chemie

Aus Potenzial Erfolge machen: 30 Rittaler schließen Nachqualifizierung erfolgreich ab

27.07.2017 | Unternehmensmeldung

Biochemiker entschlüsseln Zusammenspiel von Enzym-Domänen während der Katalyse

27.07.2017 | Biowissenschaften Chemie