Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Universum auf die Waage stellen

25.02.2016

Ein internationales Forscherteam unter Mitwirkung von Wissenschaftlern des Bonner Max-Planck-Instituts für Radioastronomie hat mit der Kombination von Beobachtungen mit Radio- und mit optischen Teleskopen den genauen Ursprung eines schnellen Radiostrahlungsausbruchs in einer weit entfernten Galaxie bestimmt. Aus der Signalverzögerung auf dem zurückgelegten Weg ist es ihnen gelungen, Rückschlüsse auf die Materieverteilung im Universum zu ziehen. Die Ergebnisse bestätigen derzeitige kosmologische Modelle zur Materieverteilung im Universum.

Am 18. April 2015 wurde mit dem 64m-Parkes-Radioteleskop in Australien im Rahmen einer systematischen Suche nach Pulsaren und Radiostrahlungsausbrüchen (“SUrvey for Pulsars and Extragalactic Radio Bursts, SUPERB) ein schneller Radiostrahlungsausbruch („Fast Radio Burst“, FRB) entdeckt.


Links: Blickfeld der Beobachtungen mit dem Parkes-Radioteleskop. Rechts: Reihe von Ausschnittvergrößerungen mit optischem Bild der „Host-Galaxie“, aufgenommen vom Subaru-Teleskop, unten rechts.

D. Kaplan (UWM), E. F. Keane (SKAO)


Verzögerung in der Ankunftszeit des Radiosignals als Funktion der Frequenz, hervorgerufen durch Materie, die das Signal von seinem Ursprung über sechs Milliarden Lichtjahren bis zur Erde durchquert.

E. F. Keane (SKAO)

Eine unmittelbar darauf losgeschickte internationale Benachrichtigung führte dazu, dass innerhalb von nur wenigen Stunden eine ganze Anzahl von Teleskopen weltweit nach dem Signal suchten, darunter das „Australia Telescope Compact Array“ (ATCA) und das 100m-Radioteleskop Effelsberg in Deutschland.

Bei FRBs handelt es sich um rätselhafte helle Radioblitze, die im Allgemeinen nur wenige Millisekunden andauern. Ihr eigentlicher Ursprung ist bisher unbekannt, wobei eine ganze Reihe möglicher Phänomene mit ihnen in Verbindung gebracht werden. FRBs sind sehr schwierig zu entdecken; mit dem aktuellen Beispiel sind nur insgesamt 17 solcher Ausbrüche bekannt.

“Bisher konnte man FRBs nur im Nachhinein durch die Analyse von Monate oder sogar Jahre vorher aufgenommener Daten identifizieren”, sagt Evan Keane, Projektwissenschaftler bei der „Square Kilometre Array Organisation“ und Erstautor der vorliegenden Studie, „Dann ist es natürlich zu spät, um direkte Nachfolgebeobachtungen des Phänomens durchführen zu können.“

Um dies zu vermeiden, hat das Forscherteam mit „SUPERB“ ein spezielles Beobachtungssystem entwickelt, mit dem FRBs innerhalb von Sekunden aufgespürt werden können und in dessen Rahmen eine Reihe von Teleskopen für unmittelbare Nachfolgebeobachtungen alarmiert werden, aus denen zusätzliche Informationen von der direkten Nachwirkung des Radioblitzes gewonnen werden können.

Mit der hohen Winkelauflösung der kombinierten sechs 22m-Antennen des ATCA konnte die Richtung, aus der das Radiosignal kam, wesentlich genauer als vorher bestimmt werden, wobei ein „Nachglimmen“ des ursprünglichen Strahlungsausbruchs insgesamt sechs Tage lang beobachtet werden konnte, ehe es unter die Nachweisgrenze geriet. Durch die lange Beobachtungszeit konnte die Position am Himmel 1000mal genauer festgelegt werden als bei vorher gefundenen FRBs.

Ein weiteres Puzzlestück kam über optische Beobachtungen mit dem 8,2m-Subaru-Teleskop auf Hawaii hinzu, mit denen eine elliptische Galaxie in rund sechs Milliarden Lichtjahren Entfernung als Ursprungsort für das Radiosignal gefunden werden konnte.

„Es ist das erste Mal überhaupt, dass wir die Ursprungsgalaxie eines FRB identifizieren konnten“, fügt Evan Keane hinzu. Die optischen Beobachtungen ermöglichten die Bestimmung einer Rotverschiebung für die Galaxie (das ist die Geschwindigkeit, mit der sich das Objekt aufgrund der Expansion des Universums von uns entfernt), und damit auch zum ersten Mal der Entfernung für einen FRB.

Um die Physik eines solchen Ereignisses zu verstehen, ist die Bestimmung von grundliegenden Eigenschaften erforderlich wie der genauen Position, der Entfernung der Quelle und ob sich das Ereignis ggf. wiederholt.

„Unsere Analyse führt uns zu dem Schluss, dass dieser neue Radiostrahlungsausbruch sich nicht wiederholen wird, sondern dass er auf ein verheerendes Ereignis in dieser fernen Galaxie zurückgeht“, sagt Michael Kramer vom Max-Planck-Institut für Radioastronomie in Bonn, der die Struktur des Radioprofils in der Beobachtung analysiert hat. Mit dem 100m-Radioteleskop Effelsberg des Instituts wurden auch Nachfolgebeobachtungen des Ereignisses durchgeführt.

FRBs zeigen eine frequenzabhängige Dispersion, eine Verzögerung des Radiosignals, die davon abhängt, wieviel Materie das Signal auf seinem Weg zur Erde durchlaufen hat. „Bis jetzt war das Dispersionsmaß alles, was wir zur Analyse hatten. Mit der zusätzlichen Entfernungsangabe können wir nun die Materiedichte zwischen dem Ursprungsort und der Erde bestimmen und mit gängigen Modellen der Materieverteilung im Universum vergleichen“, sagt Ko-Autor Simon Johnston von der Astronomy and Space Science Division der CSIRO in Sydney. „Das ermöglicht uns letztendlich, das Universum zu wiegen, oder zumindest seinen Anteil an normaler Materie.“

Im derzeitigen Modell zum Aufbau des Universums wird von folgender Zusammensetzung ausgegangen: 70% Dunkle Energie, 25% Dunkle Materie und 5% „gewöhnliche“ Materie, worunter alles fällt, was wir direkt wahrnehmen können. Allerdings können Astronomen durch Beobachtungen von Sternen, Galaxien und Wasserstoff im Universum nur ungefähr die Hälfte dieser 5% belegen; der Rest ist nicht unmittelbar sichtbar und wird daher auch als „fehlende Materie“ bezeichnet.

„Die gute Nachricht ist, dass unsere Beobachtungen und das Modell übereinstimmen, und dass wir somit die fehlende Materie gefunden haben“, erklärt Evan Keane. „Zum ersten Mal hat ein schneller Radiostrahlungsausbruch eine kosmologische Beobachtung ermöglicht.“

„Unsere Resultate zeigen das Potential der FRBs als neues Werkzeug für die Kosmologie”, schließt Michael Kramer, der auch die Berechnungen zur Bestimmung der fehlenden Materie durchgeführt hat. „Was wird erst möglich sein, wenn wir Hunderte dieser Quellen entdeckt haben?“

In Zukunft wird das „Square Kilometre Array“ (SKA) mit seiner extrem hohen Empfindlichkeit und Winkelauflösung und seinem großen Blickfeld es ermöglichen, eine Vielzahl neuer FRBs zu entdecken und deren Ursprungsgalaxien zu bestimmen. Eine wesentlich vergrößerte Stichprobe dieser Objekte wird zu Präzisionsmessungen von kosmologischen Parametern wie der Verteilung von Materie im Universum führen und ein besseres Verständnis der Dunklen Energie ermöglichen.

Der “SUrvey for Pulsars and Extragalactic Radio Bursts” (SUPERB) ist ein großangelegtes Projekt unter Einsatz einer Reihe von Teleskopen und Supercomputern für neue astrophysikalische Entdeckungen, insbesondere in Verbindung mit Pulsaren und schnellen Radiostrahlungsausbrüchen (FRBs).


Originalveröffentlichung:

“The host galaxy of a fast radio burst”, E. F. Keane, S. Johnston, S. Bhandari, E. Barr, N. D. R. Bhat, M. Burgay, M. Caleb, C. Flynn, A. Jameson, M. Kramer, E. Petroff, A. Possenti, W. van Straten, M. Bailes, S. Burke-Spolaor, R. P. Eatough, B. Stappers, T. Totani, M. Honma, H. Furusawa, T. Hattori, T. Morokuma, Y. Niino, H. Sugai, T. Terai, N. Tominaga, S. Yamasaki, N. Yasuda, R. Allen, J. Cooke, J. Jencson, M. M. Kasliwal, D. L. Kaplan, S. J. Tingay, A. Williams, R. Wayth, P. Chandra, D. Perrodin, M. Berezina, M. Mickaliger & C. Bassa.

Veröffentlichung in "Nature", am 25. Februar 2016 (Sperrfrist bis 24. Februar 2016, 19:00 MEZ).

Lokaler Kontakt:

Prof. Dr. Michael Kramer
Direktor und Leiter der Forschungsabteilung „Radioastronomische Fundamentalphysik“
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-278
E-mail: mkramer@mpifr-bonn.mpg.de

Dr. Ralph Eatough
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-122
E-mail: reatough@mpifr-bonn.mpg.de

Dr. Norbert Junkes,
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-399
E-mail: njunkes@mpifr-bonn.mpg.de

Weitere Informationen:

http://www.mpifr-bonn.mpg.de/pressemeldungen/2016/4

Norbert Junkes | Max-Planck-Institut für Radioastronomie

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Auf den Spuren der Entstehung von Kondensationstropfen
28.02.2017 | Universität Leipzig

nachricht Leuchtende Blasen in freier Wildbahn
28.02.2017 | Georg-August-Universität Göttingen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Künstlicher Intelligenz das Gehirn verstehen

Wie entsteht Bewusstsein? Die Antwort auf diese Frage, so vermuten Forscher, steckt in den Verbindungen zwischen den Nervenzellen. Leider ist jedoch kaum etwas über den Schaltplan des Gehirns bekannt.

Wie entsteht Bewusstsein? Die Antwort auf diese Frage, so vermuten Forscher, steckt in den Verbindungen zwischen den Nervenzellen. Leider ist jedoch kaum etwas...

Im Focus: Wie Proteine Zellmembranen verformen

Zellen schnüren regelmäßig kleine Bläschen von ihrer Außenhaut ab und nehmen sie in ihr Inneres auf. Daran sind die EHD-Proteine beteiligt, die Professor Oliver Daumke vom MDC erforscht. Er und sein Team haben nun aufgeklärt, wie sich diese Proteine auf der Oberfläche von Zellen zusammenlagern und dadurch deren Außenhaut verformen.

Zellen schnüren regelmäßig kleine Bläschen von ihrer Außenhaut ab und nehmen sie in ihr Inneres auf. Daran sind die EHD-Proteine beteiligt, die Professor...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Nebennierentumoren: Radioaktiv markierte Substanzen vermeiden unnötige Operationen

28.02.2017 | Veranstaltungen

350 Onlineforscher_innen treffen sich zur Fachkonferenz General Online Research an der HTW Berlin

28.02.2017 | Veranstaltungen

23. VDMA-Arbeitsberatung „Engineering und Konstruktion“ am 2. März 2017 an der TH Wildau

28.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Partnerprogramm von Stellar Datenrettung

28.02.2017 | Unternehmensmeldung

Ein Filter für schweren Wasserstoff

28.02.2017 | Biowissenschaften Chemie

Auf den Spuren der Entstehung von Kondensationstropfen

28.02.2017 | Physik Astronomie