Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das neue Kelvin kann kommen

31.03.2017

Mit der Bestimmung der Boltzmann-Konstante macht die PTB den Weg zur Neudefinition der Temperatureinheit frei

Noch ist das Kelvin buchstäblich auf Wasser gebaut – genauer: auf dem Tripelpunkt von Wasser. Damit ist die Basiseinheit der Temperatur abhängig von einem Material, dessen Eigenschaften schwanken können. Doch das wird sich ändern.


PTB-Wissenschaftler Christof Gaiser mit dem Kern des Dielektrizitätskonstanten-Gasthermometers.

(Foto: PTB)

Im Herbst 2018 wird das Kelvin, genauso wie alle anderen Einheiten im Internationalen Einheitensystem (SI), auf das feste und unverrückbare Fundament von Naturkonstanten gestellt. Beim Kelvin ist das die Boltzmann-Konstante. Wissenschaftler der Physikalisch-Technischen Bundesanstalt (PTB) haben sie jetzt mithilfe eines Dielektrizitätskonstanten-Gasthermometers so genau bestimmt, dass einer Neudefinition der Temperatureinheit Kelvin nichts mehr im Wege steht. Die Ergebnisse sind in der aktuellen Ausgabe des Fachmagazins Metrologia veröffentlicht.

Noch basiert die Definition der SI-Basiseinheit Kelvin auf einer Materialeigenschaft von Wasser: dem Tripelpunkt. Bei einer ganz bestimmten Temperatur kann Wasser gleichzeitig fest, flüssig und gasförmig sein. Allerdings ist Wasser nicht gleich Wasser. Und so ist der Tripelpunkt abhängig von der Isotopenzusammensetzung des verwendeten Wassers.

Zwar haben sich Physiker weltweit auf ein „Standard-Wasser“ geeinigt – ideal ist dieser Umstand dennoch nicht. Damit hat das Kelvin im Prinzip das gleiche Problem wie beispielsweise das Kilogramm oder das Mol: Sie alle beruhen auf den Eigenschaften stofflicher Dinge, entweder auf sogenannten Prototypen (wie das Urkilogramm, ein Zylinder aus Platin-Iridium) oder auf Wasser (wie das Kelvin).

Alle diese Materialien sind prinzipiell in vielfacher Weise veränderlich. Aber schon in etwa eineinhalb Jahren, im Herbst 2018, wird aller Voraussicht nach eine große internationale Konferenz die Grundlagen des gesamten Internationalen Einheitensystems SI neu festlegen. Ab dann beruhen alle Einheiten auf einem Satz Naturkonstanten – unveränderlichen Eigenschaften der physikalischen Welt. Sie sind dann das Fundament aller Dinge rund ums Messen.

Die passende Naturkonstante für Temperaturmessungen ist die Boltzmann-Konstante k. Sie gibt an, wie die thermische Energie eines Gases (also die Bewegung der Gasteilchen) von der Temperatur abhängt. In einem abgeschlossenen Gefäß lässt sich die kinetische Energie messen, indem man den Druck des Gases bestimmt. Das geht – bei der geforderten Genauigkeit – etwa mit einem akustischen Gasthermometer.

Die entsprechenden Messungen an den Metrologieinstituten Englands, Italiens, Frankreichs, Chinas und der USA erreichen eine gemittelte Messunsicherheit von weniger als 1 ppm (ein Millionstel) – und erfüllen damit die erste Bedingung des Konsultativ-Komitees für Thermometrie (CCT) für die Neudefinition des Kelvins. Aber eine weitere Bedingung lautet, dass eine zweite, unabhängige Methode ähnlich kleine Messunsicherheiten erreicht. Zu diesem Zweck startete die PTB im Jahr 2007 das Projekt des Dielektrizitätskonstanten-Gasthermometers, das mit 1,9 ppm jetzt die geforderte Genauigkeit erreicht hat.

Dieses spezielle Thermometer nutzt die Tatsache aus, dass das Edelgas Helium als sogenanntes Dielektrikum die Kapazität eines Kondensators verändert. Mit einer elektrischen Messung kann man also die Dichte messen – und darüber eine Temperatur. Und elektrische Kapazitätsmessungen kann man mit einer sehr großen Genauigkeit schaffen.

Die Messunsicherheit liegt in diesem Fall nur bei einigen Milliardsteln. Allerdings mussten dafür alles perfekt stimmen: Die Wissenschaftler mussten die Materialeigenschaften der verwendeten Kondensatoren bei hohen Drücken (bis 7 MPa) an der Grenze des Machbaren bestimmen und eine Gasreinheit von mehr als 99,99999 % gewährleisten.

Darüber hinaus musste das höchste Normal der PTB für die Druckmessung, das auf Kolbenmanometern basiert, verbessert werden. Diese weltweit einmaligen Entwicklungen gelangen nur mithilfe verschiedener Kooperationen innerhalb der PTB (insbesondere mit den beiden Arbeitsgruppen „Druck“ und „Geometrische Normale“) sowie durch breite internationale Zusammenarbeit.

Nachdem die Boltzmann-Konstante nun mit zwei unabhängigen Methoden hinreichend genau bestimmt werden konnte, wird CODATA im September 2017 den endgültigen Wert für k berechnen. Die „CODATA Task Group on Fundamental Constants“ ist eine internationale Expertengruppe, deren Aufgabe es ist, die in den Metrologieinstituten aus aller Welt ermittelten Werte von Naturkonstanten zu bewerten und unter einen Hut zu bringen. Damit ist der Weg für die Neudefinition des Kelvins auf der Grundlage einer Naturkonstanten frei. Und im Herbst 2018 heißt es dann wohl: Bühne frei für ein ganz neues SI!
(es/ptb)

Ansprechpartner:
Dr. Christof Gaiser, PTB-Arbeitsgruppe 7.43 Rauschthermometrie, Telefon: (030) 3481-7349, E-Mail: christof.gaiser@ptb.de

Die wissenschaftliche Veröffentlichung:
C. Gaiser, B. Fellmuth, N. Haft, A. Kuhn, B. Thiele-Krivoi, T. Zandt, J. Fischer, O. Jusko, W. Sabuga: Final determination of the Boltzmann constant by dielectric-constant gas thermometry. Metrologia 54, 280–289 (2017)

Weitere Informationen:

http://www.ptb.de/cms/presseaktuelles/journalisten/nachrichtenpresseinformatione...

Dipl.-Journ. Erika Schow | Physikalisch-Technische Bundesanstalt (PTB)

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau
17.11.2017 | Universität Ulm

nachricht Zwei verdächtigte Sterne unschuldig an mysteriösem Antiteilchen-Überschuss
17.11.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte