Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Licht braucht mehr Bass

21.05.2014

Ganz neue Möglichkeiten, ultrakurze Laserpulse zu formen bringt eine Technologie der TU Wien: Ein „optischer Synthesizer“ ermöglicht hundertmal stärkere Lichtblitze als herkömmliche Methoden.

Sie bringen Licht in die Welt der Atome und Moleküle: Ultrakurze Lichtpulse werden benötigt, um extrem schnell ablaufenden Quantenphänomene studieren zu können. Seit Jahren wird daran gearbeitet, die Form dieser Lichtwellen gezielt anzupassen, etwa um die Bahn von Elektronen genau zu steuern.


Laser wechselwirkt mit Atomen: Es handelt sich nicht einfach um eine sinusförmige Welle, sondern um eine Welle mit komplizierter Form - maßgeschneidert, um einen starken Effekt am Atom auszulösen.

TU Wien


Die Vakuumkammer mit der Gaszelle, in der mit den geformten Lichtwellen Attosekundenpulse erzeugt werden.

TU Wien

An der TU Wien wurde nun in Zusammenarbeit mit dem Imperial College London und dem Max-Born-Institut Berlin eine ganz neue und außerordentlich mächtige Methode entwickelt, die Laser-Wellenform zu beeinflussen. Ähnlich wie der charakteristische Klang von Musikinstrumenten entsteht, indem man verschiedene Frequenzen gleichzeitig zum Klingen bringt, kombiniert man nun verschiedene Licht-Frequenzen zu einer genau passenden Wellenform. Der Trick liegt im Hinzufügen eines langwelligen Anteils – also dem, was in der Musik der Basston wäre.

Lichtpulse machen noch kürzere Lichtpulse

Ein Milliardstel einer Milliardstelsekunde ist eine Attosekunde. Auf diese unvorstellbar kurze Zeitskala muss man sich begeben, um etwa die Bewegung von Elektronen im Atom zu untersuchen. „Lichtpulse im Attosekunden-Bereich kann man erzeugen, indem man zunächst von tausendfach längeren Laserpulsen ausgeht und sie auf ein Atom abfeuert“, erklärt Stefan Haessler, Wissenschaftler am Institut für Photonik der TU Wien. Der Laserpuls entreißt dem Atom ein Elektron und treib es zunächst vom Atom fort. Doch nach kurzer Zeit wird das Elektron vom oszillierenden elektrischen Feld des Lasers abgebremst und schließlich in die entgegengesetzte Richtung beschleunigt, sodass es schließlich zurückkehrt und wieder mit dem Atom kollidiert.

„Ob das Elektron das Atom wieder trifft und mit welcher Wucht das geschieht, hängt von der genauen Form der Laserwelle ab“, sagt Stefan Haessler. Im optimalen Fall hat das Elektron durch ein genau richtig geformtes Laserfeld so viel Energie mitbekommen, dass beim heftigen Zusammenstoß mit dem Atom dann ein hochenergetischer, noch viel kürzerer Laserpuls ausgesandt wird – ein Attosekundenpuls, mit einer Frequenz im Ultraviolett- bis Röntgenbereich.

Eine Symphonie aus Laserpulsen

Am besten gelingt das,wenn man bei der Herstellung des ersten, längeren Laserpulses verschiedene Wellen unterschiedlicher Wellenlänge zusammenfügt, sodass nicht bloß eine Sinus-förmige Oszillation entsteht, sondern eine kompliziertere, sägezahnartige Form. Ähnliches kennt man aus der Akustik: Unterschiedliche Klangfarben werden erzeugt, indem man Wellen unterschiedlicher Frequenz überlagert.

Schon bisher gab es Versuche, die Form der Laserwelle zu beeinflussen. Man verdoppelte die Frequenz des Laserpulses und kombinierte die ursprüngliche Welle mit der Welle doppelter Frequenz. Doch die Möglichkeiten, die sich aus dieser Frequenzverdopplung ergeben, sind beschränkt. An der TU Wien ging man in die andere Richtung: Man verwendet nicht bloß eine zusätzliche Welle mit höherer Frequenz, sondern auch eine Welle mit niedriger Frequenz – man fügt dem Laserpuls also in gewissem Sinn einen „optischen Basston“ hinzu – und das erweitert die Möglichkeiten für das Formen des Laserpulses ganz gewaltig.

„Wir können nun drei verschiedene Frequenzen in Intensität und Phasenbeziehung aufeinander abstimmen“, sagt Stefan Haessler, „damit kommen wir der theoretisch berechneten ‚perfekten Welle‘ schon ziemlich nahe.“ Mit den neu geformten Laserpulsen kann den Atomen sehr effizient ein Elektron entrissen werden, das dann viel Energie erhält – so konnte eine hundertfach stärkere Strahlung an Attosekunden-Pulsen erzeugt werden, als man mit herkömmlichen Sinus-Wellen herstellen könnte.

Auch viele andere Laser-getriebene Effekte können auf diese Weise optimiert werden, ist Stefan Haessler überzeugt: Nicht nur Atome, sondern auch Moleküle, Plasmen oder Festkörper könnte man mit maßgeschneiderten Laserpulsen beschießen und ganz unterschiedliche Effekte damit auslösen. Die Methode ist nun im Prinzip erweiterbar: Nachdem man jetzt weiß, wie man dem Laserpuls niedrigere Frequenzen hinzufügen kann, spricht nichts dagegen, noch weitere Frequenzen dazuzunehmen. Je mehr Frequenzen man kombiniert, umso vielfältiger werden die Möglichkeiten – ähnlich die die Möglichkeiten, die ein Komponist vorfindet, wenn er nicht mehr bloß für Flöte, sondern für ein ganzes Orchester komponiert.

Rückfragehinweis:
Dr. Stefan Hässler
Institut für Photonik
Technische Universität Wien
Gusshausstraße 25-29, 1040 Wien
T: +43-1-58801-38778
stefan.haessler@tuwien.ac.at

Weitere Informationen:

http://journals.aps.org/prx/abstract/10.1103/PhysRevX.4.021028 Originalpublikation

Dr. Florian Aigner | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Berichte zu: Atom Atome Elektron Elektronen Energie Frequenz Laserpuls Laserwelle Licht Moleküle Photonik Strahlung Welle

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Das anwachsende Ende der Ordnung
27.03.2017 | Universität Konstanz

nachricht In einem Quantenrennen ist jeder Gewinner und Verlierer zugleich
27.03.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

Zweites Symposium 4SMARTS zeigt Potenziale aktiver, intelligenter und adaptiver Systeme

27.03.2017 | Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fließender Übergang zwischen Design und Simulation

27.03.2017 | HANNOVER MESSE

Industrial Data Space macht neue Geschäftsmodelle möglich

27.03.2017 | HANNOVER MESSE

Neue Sicherheitstechnik ermöglicht Teamarbeit

27.03.2017 | HANNOVER MESSE