Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das genaueste Bild des Protons - HERA-Experimente H1 und ZEUS veröffentlichen kombinierte Analyse

02.07.2015

15 Jahre lang wurde an Deutschlands größtem Teilchenbeschleuniger HERA gemessen, weitere acht Jahre wurden die Daten ausgewertet und analysiert. Jetzt haben die Teilchenphysiker der beiden großen HERA-Experimente H1 und ZEUS die weltweit präzisesten Resultate über die innere Struktur und das Verhalten des Protons veröffentlicht. Die Analyse zeichnet ein detailliertes Bild vom brodelnden Teilchensee im Inneren des Teilchens.

Die Teams beider Detektoren kombinierten für die Auswertung die Daten von mehr als zwei Milliarden Teilchenkollisionen, die sie an DESYs Beschleuniger HERA beobachtet hatten. Rund 300 Autoren von 70 Forschungsinstituten haben intensiv an dieser Analyse gearbeitet. „Diese Publikation beinhaltet die Kronjuwelen von HERA und wird auf lange Zeit das präziseste Bild des Protons sein wird“, so DESY-Forschungsdirektor Joachim Mnich. „Diese Ergebnisse sind nicht nur wichtig für das Verständnis der grundlegenden Eigenschaften der Materie, sie sind auch eine essentielle Basis für Experimente an Protonenbeschleunigern wie dem LHC am CERN in Genf.


Der einzigartige Teilchenbeschleuniger HERA besteht aus einem supraleitenden Protonenring (oben) und dem normalleitenden Elektronenring (unten).

DESY


Das Proton enthält außer drei Quarks (grün), die von Gluonen (Federn) zusammengehalten werden, eine „brodelnde Suppe“ aus Gluonen und kurzlebigen Paaren aus Quarks und Antiquarks (orange).

DESY

In jedem einzelnen Atomkern unseres Universums befinden sich Protonen. Seit Jahrzehnten ist bekannt, dass sie sich aus drei Quarks zusammensetzen – zwei up- und ein down-Quark –, die durch die sogenannten Gluonen zusammengehalten werden, die Trägerteilchen der starken Kraft. Dieses Bild zählt zum Wissen, das an Schulen gelehrt wird. Das wahre Innenleben des Protons ist jedoch wesentlich komplexer: Das Proton gleicht einer brodelnden Teilchensuppe, in der Gluonen weitere Gluonen produzieren oder Quark-Antiquark-Paare bilden, die sogenannten Seequarks, die wiederum alle sehr schnell wieder miteinander wechselwirken.

Der Teilchenbeschleuniger HERA (Hadron-Elektron-Ring-Anlage) wurde gebaut, um tief in das Innere des Protons hineinzusehen und seine Struktur mit Hilfe von Elektronen als Sonden genauestens zu untersuchen. Von 1992 bis 2007 wurden dazu Protonen in einem 6,3 Kilometer langen, supraleitenden Beschleunigerring auf fast Lichtgeschwindigkeit beschleunigt, bevor sie mit in entgegengesetzter Richtung beschleunigten Elektronen – oder deren Antiteilchen, den Positronen – zusammenprallten. Elektronen und Positronen gehören zur Elementarteilchensorte der Leptonen. Die Leptonen drangen tief in das Proton ein und wurden jeweils an einem der Bausteine des Protons gestreut. Das geschieht entweder über die elektromagnetische oder über die sogenannte schwache Kraft, zwei der vier fundamentalen Kräfte der Natur. Die Reaktionen wurden in den beiden hausgroßen Vielzweck-Detektoren H1 und ZEUS gemessen.

Dabei analysierten die Wissenschaftler die Wahrscheinlichkeit für verschiedene Verhaltensweisen dieser Lepton-Proton-Streuprozesse an beiden Experimenten und verglichen ihre Ergebnisse mit der bestmöglichen Beschreibung der Struktur des Protons, der Theorie der Quantenchromodynamik (QCD). Ergebnis: Die HERA-Ergebnisse stimmen ideal mit der QCD-Theorie überein und zeigen dabei, dass die Struktur des Protons immer dynamischer wird,je höher die Energie ist, bei der sie erkundet wird.

Als weiteres Ergebnis können die HERA-Daten eindrucksvoll belegen, dass sich die elektromagnetische und die schwache Kraft bei extrem hohen Energien vereinigen, wie es vom Standardmodell der Teilchenphysik vorhergesagt wird. Diese Erkenntnis stützt die Vermutung der Physiker dass diese beiden Kräfte zwei Seiten derselben Medaille sind, obwohl die elektromagnetische Kraft bei niedrigen Energien viel stärker ist als die schwache Kraft. Dieses Ergebnis weist vielleicht am Ende sogar den Weg zur Vereinheitlichung aller vier Grundkräfte der Natur.

In den HERA-Daten konnten die Physiker die beiden Kräfte anhand der Art der Trägerteilchen identifizieren, die die Kräfte vermitteln: Während die elektromagnetische Kraft durch das neutrale Photon vermittelt wird, hat die schwache Kraft sowohl ein neutrales als auch zwei geladene Trägerteilchen, die sogenannten Z- und W-Bosonen. Bei hohen Kollisionsenergien zeigen die H1- und ZEUS-Daten, dass sich beide Kräfte absolut gleich verhalten – ein deutlicher Hinweis auf die elektroschwache Vereinigung.

„Durch die Kombination der Messungen von beiden Detektoren erreichen wir die höchstmögliche Präzision unserer Ergebnisse“, sagt H1-Sprecher Stefan Schmitt (DESY). „Die kombinierten Daten profitieren nicht nur von der verbesserten Statistik, sondern auch von einem besseren Verständnis jeder einzelnen Messung und von der Interkalibration, die sich dadurch ergibt, dass beide Wissenschaftlergruppen unterschiedliche Detektoren und experimentelle Techniken für ihre Messungen nutzten.“ Allerdings ist die Kombination der Daten aus genau diesem Grund enorm aufwendig – sie wurden von unterschiedlichen Teilchendetektoren aufgezeichnet, mit verschiedenen Techniken analysiert und über einem Zeitraum von 15 Jahren gesammelt. „Jeder der Datenpunkte hat bis zu 20 Unsicherheitsquellen, und bei der Kombination der Daten kann jede der 20 Quellen mit den Unsicherheiten des nächsten Datenpunktes in Beziehung gebracht werden, und alle diese Beziehungen müssen verstanden werden“, sagt ZEUS-Sprecher Matthew Wing (University College London).

Bereits im Jahr 2009 veröffentlichten H1 und ZEUS eine gemeinsame Arbeit über die Struktur des Protons, das allerdings nur auf den Daten des HERA-Betriebs bis zum Jahr 2000 basiert. Mit 600 Zitierungen bis heute ist es eine der am häufigsten zitierten Publikationen auf diesem Gebiet. Die jetzt erschienene Veröffentlichung basiert auf der vierfachen Anzahl an Teilchenkollisionen und enthält auch Daten aus einem speziellen Betrieb von HERA bei unterschiedlichen Teilchenenergien.

Dennoch hinterlassen die Daten auch immer noch Rätsel bei der Überprüfung des Standardmodells der Teilchenphysik. „Besonders bei einem niedrigen Energieübertrag zwischen Elektron und Proton kann die als Bezugstheorie verwendete Quantenchromodynamik unsere Messungen nicht ausreichend beschreiben“, sagt Wing. „Das wird auf alle Fälle etwas sein, auf das Theoretiker und Phänomenologen in Zukunft ein Auge werfen sollten.“

Weitere Informationen:

http://www.desy.de/aktuelles/news_suche/index_ger.html?openDirectAnchor=829&... Meldung mit Bildern
http://xxx.lanl.gov/abs/1506.06042 Originalpublikation

Dr. Thomas Zoufal | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Perspektiven durch gespiegelte Systeme
05.12.2016 | Friedrich-Schiller-Universität Jena

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flüssiger Wasserstoff im freien Fall

05.12.2016 | Maschinenbau

Forscher sehen Biomolekülen bei der Arbeit zu

05.12.2016 | Biowissenschaften Chemie

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungsnachrichten