Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Blubbern von Ordnung

14.07.2017

Molekulare Ordnung fördert Kavitation

Kavitation beschreibt die Entstehung kleiner Blasen in Flüssigkeiten und deren anschließendem Zerfall. Erstmalig entdeckte der niederländische Physiker Christiaan Huygens im Jahr 1672 das Phänomen der Kavitation. Seit jeher beschäftigen sich Strömungsforscher damit. Problematisch ist die Kavitation, weil die Blasen plötzlich und schnell zusammenfallen und dabei enorme Kräfte freisetzen.


Disklinationslinie im Flüssigkristall fließen um ein Hindernis in einem mikrofluidischen Kanal.

(c) MPIDS


Wachstum einer Kavitationsdomäne

(c) MPIDS

Zum Beispiel: Durchwirbeln Schiffsschrauben Meerwasser, verursachen die Blasen an den Schrauben jährliche Reparaturkosten in Millionenhöhe. Es kommt zum sogenannten Kavitationsfraß, denn die Oberfläche wird durch die hohen mechanischen Beanspruchungen beschädigt. Ein Forscherteam vom Göttinger Max-Planck-Institut für Dynamik und Selbstorganisation (MPIDS), der Technischen Universität Berlin (TU Berlin) und der Eidgenössischen Technischen Hochschule Zürich (ETH Zürich) konnte nun erstmalig zeigen, dass Kavitation auch auf viel kleiner Skala stattfindet, besonderes in Flüssigkeiten mit molekularer Ordnung.

So können Flüssigkristalle beim Durchströmen von Mikrokanälen sehr leicht kavitieren. Die Grundlagenforscher hoffen anhand ihrer Ergebnisse zukünftig Blasenbildung in verschiedenen Flüssigkeiten, aber auch Abläufe in der Zelle besser zu verstehen, da biologische Bausteine der Zelle ähnliche Eigenschaften wie Flüssigkristalle haben. Die Ergebnisse von Tillmann Stieger und seinen Koautoren sind jetzt in Fachblatt Nature Communications erschienen.

Ordnung ist der Schlüssel

Bewegt sich eine Flüssigkeit schnell in Bezug auf ein festes Objekt, fällt der Druck ab. Erreicht dieser Druckabfall den Dampfdruck, tritt Kavitation auf. Das Phänomen ist als hydrodynamische Kavitation bekannt. Das Team der Strömungsforscher aus Göttingen, Berlin und Zürich fand nun heraus, dass Kavitation in Flüssigkristallen bereits unter sehr milden Bedingungen auftritt - im Gegensatz zu den bisher bekannten aggressiven Methoden. Auf Grund ihrer Materialeigenschaften ordnen die Moleküle der Flüssigkristalle in der Strömung parallel zueinander aus, sodass die Blasenbildung energetisch begünstigt wird.

Wie im Großen so im Kleinen

Die Idee zu dieser Arbeit stammt aus Versuchen der PhD-Forschung von Dr. Anupam Sengupta am MPIDS, der jetzt als Human Frontiers Cross-Disciplinary Fellow in Zürich arbeitet. Die Forscher entdeckten, dass Flüssigkristalle sehr leicht kavitieren, wenn sie in winzigen Kanälen fließen. Dazu haben sie in ihren Experimenten Flüssigkristalle in winzigen Kanälen mit 100 Mikrometer Durchmesser (die Breite eines Haares) fließen lassen.

Stromabwärts an einem eingebrachten Pfeiler kommt es zum Druckabfall, bei dem die Wissenschaftler Kavitation beobachteten. Dr. Sengupta und Dr. Marco G. Mazza, Leiter einer Forschungsgruppe in der Abteilung für komplexe Flüssigkeiten am MPIDS, taten sich zusammen, um molekulardynamische Simulationen durchzuführen und das Problem theoretisch zu untersuchen.

Die Forscher beobachteten, je mehr die Moleküle in den Flüssigkristallen ausgerichtet sind desto leichter bildet sich Kavitation. Das bedeutet, dass der Ordnungsgrad der Flüssigkristalle den Kavitationsvorgang reguliert. Diese Entdeckung hat Auswirkungen auf eine schwierige Begrenzung der Mikrofluidik, nämlich das Vermischen von Flüssigkeiten in mikrofluidischen Geräten.

Bei Strömungen auf der Mikroskala erfolgt das Mischen vor allem durch molekulare Diffusion, in einem sehr langsamen Prozess. Das Wachstum von Kavitationsblasen und deren Zusammenbruch kann den Mischprozess erheblich beschleunigen. „Dies ist eine spannende Neuentwicklung in dem mehr als 100 Jahre alten Bereich der Flüssigkristallforschung“, betont Dr. Marco G. Mazza, Leiter der Gruppe in der Abteilung Komplexe Fluide am Max-Planck-Institut für Dynamik und Selbstorganisation.

„Unsere Arbeit eröffnet neue Möglichkeiten, den hydrodynamischen Fluss durch die Ordnung und Topologie der Flüssigkristalle zu manipulieren. Das wird eine Richtung sein, die wir in Zukunft verfolgen werden“, so Mazza abschließend.

Weitere Informationen:

http://www.ds.mpg.de/3117369/170703_PM_cavitation
https://www.nature.com/articles/ncomms15550.pdf

Carolin Hoffrogge | Max-Planck-Institut für Dynamik und Selbstorganisation

Weitere Berichte zu: Blasenbildung Blubbern Dynamik Flüssigkristalle MPIDS Max-Planck-Institut Zelle

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Moleküle brillant beleuchtet
23.04.2018 | Max-Planck-Institut für Quantenoptik

nachricht Wie zerfallen kleinste Bleiteilchen?
23.04.2018 | Ernst-Moritz-Arndt-Universität Greifswald

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Metalle verbinden ohne Schweißen

Kieler Prototyp für neue Verbindungstechnik wird auf Hannover Messe präsentiert

Schweißen ist noch immer die Standardtechnik, um Metalle miteinander zu verbinden. Doch das aufwändige Verfahren unter hohen Temperaturen ist nicht überall...

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Moleküle brillant beleuchtet

23.04.2018 | Physik Astronomie

Sauber und effizient - Fraunhofer ISE präsentiert Wasserstofftechnologien auf Hannover Messe

23.04.2018 | HANNOVER MESSE

Fraunhofer IMWS entwickelt biobasierte Faser-Kunststoff-Verbunde für Leichtbau-Anwendungen

23.04.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics