Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Damit das Sonnenfeuer nicht erstickt

15.02.2011
In Jülich beginnt heute die Fusionsforschung für das Jahr 2035

Der Plasmagenerator PSI-2 hat in Jülich seinen Betrieb aufgenommen. Das drei Tonnen schwere und eine Million Euro teure Gerät wird helfen, Materialien zu finden, die ab dem Jahr 2035 als Wandelemente den Dauerbetrieb in einem Fusionskraftwerk aushalten können. Dazu müssen diese rund um die Uhr der enormen Wärmebelastung durch die 100 Millionen Grad heiße Fusionsmaterie im Inneren der Brennkammer und dem Beschuss mit Neutronen standhalten.

„Wir haben unser Experiment PSI-2 während des letzten Dreivierteljahres aufgebaut und jetzt das erste Plasma erzeugt“, sagt Prof. Bernhard Unterberg vom Jülicher Institut für Energie- und Klimaforschung. Er und sein Team untersuchen die Wechselwirkung des heißen Plasmagases mit den umgebenden Oberflächen, auf englisch plasma-surface interaction, oder kurz PSI. Nur bei Plasmatemperaturen von etwa 100 Millionen Grad verschmelzen die Atomkerne optimal und setzen Energie frei. Nach dem gleichen Prinzip erzeugt auch unsere Sonne ihre Energie.

Für die Wände eines Fusionskraftwerks wären diese hohen Brenntemperaturen eigentlich kein Problem. Denn ein eigens dafür ausgelegter Magnetfeldkäfig ist in der Lage, den ungewollten Kontakt des Plasmas mit der gesamten Innenwand zu verhindern. Doch in Fusionskraftwerken ist ein kontrollierter Kontakt des Plasmas mit der Kammerwand gewollt und sogar notwendig. „Die Heliumkerne, die bei der Fusion der Wasserstoffisotope Deuterium und Tritium entstehen, wirken auf den Fortgang der Fusion wie das Verbrennungsprodukt Kohlendioxid auf eine Kerze im abgedeckten Glas: Wenn wir das Helium nicht rasch genug entfernen, erstickt die Fusion“, erklärt Dr. Ralph Schorn vom Jülicher Institut für Energie- und Klimaforschung. Deshalb wird das schützende Magnetfeld an bestimmten Stellen – den Divertoren – kontrolliert geöffnet und das Helium abgepumpt. Diese Stellen der Wand sind kontinuierlich einem hohen Wärme- und Teilchenfluss ausgesetzt, der Material aus der Wand herausschlägt. „Dieses kann in das Plasma gelangen und schlimmstenfalls die Fusion beenden. Außerdem wird die Wand dünner, was natürlich ihre Lebensdauer begrenzt und damit auch in die Wirtschaftlichkeit späterer Kraftwerke eingeht“, sagt Unterberg.

Trotz ausführlicher Untersuchungen der Wandschädigung an der Jülicher Experimentalplattform TEXTOR gibt es bisher keine Daten über das Verhalten der Wand im Fusionsdauerbetrieb unter den realen Bedingungen von Kraftwerken. Zwar nimmt das internationale Fusionsexperiment ITER im Jahre 2019 seinen Betrieb auf. Doch anders als später in „richtigen“ Kernfusionskraftwerken wird es in ITER keinen Dauerbetrieb geben. Die Kernfusion wird jeweils nur für einige Minuten gezündet. Deshalb beginnt das Forschungszentrum Jülich nun mit der Untersuchung der Auswirkungen, die der Dauerbetrieb auf die Wände der Fusionskraftwerke ab dem Jahre 2035 haben wird. „Dass wir schon jetzt damit anfangen, ist zwingend notwendig, um die Erkenntnisse rechtzeitig vorliegen zu haben“, sagt Unterberg. „Denn für viele Entwicklungen benötigen wir eine lange Vorlaufzeit.“

Im jetzt begonnenen Pilotexperiment PSI-2 wird Plasma auf eine Probe des Wandmaterials „geschossen“. Mit Hilfe von Laserlicht wird dann analysiert, welche Materialien in das Plasma gelangen und die Fusion zu behindern drohen. Anders als bei den auf die Energieerzeugung zielenden Reaktorkonzepten, in denen die Kernfusion nur aufrechterhalten werden kann, wenn das Plasma von Magnetfeldern auf eine Ringbahn gezwungen wird, bewegt sich das Plasma im PSI-2 im Wesentlichen nur geradeaus, was die Analyse vereinfacht. Kernfusion findet hier nicht statt.

Die nächste Projektphase JULE-PSI ab dem Jahre 2015 planen die Forscher schon jetzt, denn es fehlt noch ein sehr wichtiger Aspekt: Die Wand im Fusionskraftwerk wird fortwährend mit Neutronen bestrahlt. Diese Neutronen entstehen bei der Kernfusion und tragen 80 Prozent der erzeugten Energie aus dem Plasma hinaus. „In den Wänden und in speziellen Materialien außerhalb der Brennkammer werden die Neutronen abgebremst und erwärmen dadurch das Material. Über einen Kühlkreislauf kann man die Wärme dann zur Dampferzeugung nutzen und eine Turbine zur Stromerzeugung antreiben“, erklärt Unterberg.

Der springende Punkt ist, so Unterberg: „Die Neutronen verändern die Materialeigenschaften der Wand, etwa die Struktur des Kristallgitters.“ Mit dem Nachfolgeexperiment JULE-PSI werden die Jülicher Forscher erstmals vorweg mit Neutronen bestrahlte Wandproben im Plasmadauerbetrieb untersuchen, um Erkenntnisse darüber zu gewinnen, welchen Einfluss die Neutronenbestrahlung auf die Wandeigenschaften hat. Das Pilotexperiment PSI-2 dient auch dazu, die späteren Abläufe bei JULE-PSI zu erproben und geeignete Standards zu entwickeln. Da das Wandmaterial durch den Neutronenbeschuss unter anderem auch radioaktiv wird, muss es in Speziallabors untersucht werden, wie es sie nur an wenigen Forschungsstätten weltweit gibt. „Gepaart mit unserem Know-how in der Materialforschung und der Plasma-Wand-Wechselwirkung sind wir für diese Untersuchungen prädestiniert. Es gibt bisher weltweit kaum eine andere Forschungseinrichtung, die das auf diesem Niveau kann. Deshalb hat das Forschungszentrum Jülich diese innerhalb der europäischen Fusionsforschung als wichtig identifizierte Aufgabe übernommen“, sagt Schorn.

Daten und Fakten zu PSI-2:
Elektrische Anschlussleistung: 350 Kilowatt
Plasmatemperatur: bis zu 200.000 Grad
Länge: 7 Meter
Gewicht: rund 3,3 Tonnen
Kosten: eine Millionen Euro für den Aufbau
Technisches Personal: 10 Mitarbeiter
Wärmeleistung des Plasmas auf die Wand: ein Megawatt pro Quadratmeter
Plasmateilchenstrom: 100 Trilliarden (10^23) Teilchen pro Quadratmeter und Sekunde

Neutralgasdruck: etwa ein Zehnmillionstel des Atmosphärendrucks

Informationen zur Fusionsforschung im Jülicher Institut für Energie- und Klimaforschung:

http://www.fz-juelich.de/fusion

Pressekontakt:
Kosta Schinarakis, Tel.: 02461 61 4771, k.schinarakis@fz-juelich.de
Erhard Zeiss, Tel.: 02461 61 1841, e.zeiss@fz-juelich.de
Das Forschungszentrum Jülich…
… betreibt interdisziplinäre Spitzenforschung, stellt sich drängenden Fragen der Gegenwart und entwickelt gleichzeitig Schlüsseltechnologien für morgen. Hierbei konzentriert sich die Forschung auf die Bereiche Gesundheit, Energie und Umwelt sowie Informationstechnologie. Einzigartige Expertise und Infrastruktur in der Physik, den Materialwissenschaften, der Nanotechnologie und im Supercomputing prägen die Zusammenarbeit der Forscherinnen und Forscher. Mit rund 4 600 Mitarbeiterinnen und Mitarbeitern gehört Jülich, Mitglied der Helmholtz-Gemeinschaft, zu den großen Forschungszentren Europas.

Kosta Schinarakis | Forschungszentrum Juelich
Weitere Informationen:
http://www.fz-juelich.de/fusion

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Quanten-Boten kommunizieren doppelt so schnell
22.02.2018 | Österreichische Akademie der Wissenschaften

nachricht Highlight der Halbleiter-Forschung
20.02.2018 | Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

Tag der Seltenen Erkrankungen – Deutsche Leberstiftung informiert über seltene Lebererkrankungen

21.02.2018 | Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Von Hefe für Demenzerkrankungen lernen

22.02.2018 | Biowissenschaften Chemie

Sektorenkopplung: Die Energiesysteme wachsen zusammen

22.02.2018 | Seminare Workshops

Die Entschlüsselung der Struktur des Huntingtin Proteins

22.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics