Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Damit das Sonnenfeuer nicht erstickt

15.02.2011
In Jülich beginnt heute die Fusionsforschung für das Jahr 2035

Der Plasmagenerator PSI-2 hat in Jülich seinen Betrieb aufgenommen. Das drei Tonnen schwere und eine Million Euro teure Gerät wird helfen, Materialien zu finden, die ab dem Jahr 2035 als Wandelemente den Dauerbetrieb in einem Fusionskraftwerk aushalten können. Dazu müssen diese rund um die Uhr der enormen Wärmebelastung durch die 100 Millionen Grad heiße Fusionsmaterie im Inneren der Brennkammer und dem Beschuss mit Neutronen standhalten.

„Wir haben unser Experiment PSI-2 während des letzten Dreivierteljahres aufgebaut und jetzt das erste Plasma erzeugt“, sagt Prof. Bernhard Unterberg vom Jülicher Institut für Energie- und Klimaforschung. Er und sein Team untersuchen die Wechselwirkung des heißen Plasmagases mit den umgebenden Oberflächen, auf englisch plasma-surface interaction, oder kurz PSI. Nur bei Plasmatemperaturen von etwa 100 Millionen Grad verschmelzen die Atomkerne optimal und setzen Energie frei. Nach dem gleichen Prinzip erzeugt auch unsere Sonne ihre Energie.

Für die Wände eines Fusionskraftwerks wären diese hohen Brenntemperaturen eigentlich kein Problem. Denn ein eigens dafür ausgelegter Magnetfeldkäfig ist in der Lage, den ungewollten Kontakt des Plasmas mit der gesamten Innenwand zu verhindern. Doch in Fusionskraftwerken ist ein kontrollierter Kontakt des Plasmas mit der Kammerwand gewollt und sogar notwendig. „Die Heliumkerne, die bei der Fusion der Wasserstoffisotope Deuterium und Tritium entstehen, wirken auf den Fortgang der Fusion wie das Verbrennungsprodukt Kohlendioxid auf eine Kerze im abgedeckten Glas: Wenn wir das Helium nicht rasch genug entfernen, erstickt die Fusion“, erklärt Dr. Ralph Schorn vom Jülicher Institut für Energie- und Klimaforschung. Deshalb wird das schützende Magnetfeld an bestimmten Stellen – den Divertoren – kontrolliert geöffnet und das Helium abgepumpt. Diese Stellen der Wand sind kontinuierlich einem hohen Wärme- und Teilchenfluss ausgesetzt, der Material aus der Wand herausschlägt. „Dieses kann in das Plasma gelangen und schlimmstenfalls die Fusion beenden. Außerdem wird die Wand dünner, was natürlich ihre Lebensdauer begrenzt und damit auch in die Wirtschaftlichkeit späterer Kraftwerke eingeht“, sagt Unterberg.

Trotz ausführlicher Untersuchungen der Wandschädigung an der Jülicher Experimentalplattform TEXTOR gibt es bisher keine Daten über das Verhalten der Wand im Fusionsdauerbetrieb unter den realen Bedingungen von Kraftwerken. Zwar nimmt das internationale Fusionsexperiment ITER im Jahre 2019 seinen Betrieb auf. Doch anders als später in „richtigen“ Kernfusionskraftwerken wird es in ITER keinen Dauerbetrieb geben. Die Kernfusion wird jeweils nur für einige Minuten gezündet. Deshalb beginnt das Forschungszentrum Jülich nun mit der Untersuchung der Auswirkungen, die der Dauerbetrieb auf die Wände der Fusionskraftwerke ab dem Jahre 2035 haben wird. „Dass wir schon jetzt damit anfangen, ist zwingend notwendig, um die Erkenntnisse rechtzeitig vorliegen zu haben“, sagt Unterberg. „Denn für viele Entwicklungen benötigen wir eine lange Vorlaufzeit.“

Im jetzt begonnenen Pilotexperiment PSI-2 wird Plasma auf eine Probe des Wandmaterials „geschossen“. Mit Hilfe von Laserlicht wird dann analysiert, welche Materialien in das Plasma gelangen und die Fusion zu behindern drohen. Anders als bei den auf die Energieerzeugung zielenden Reaktorkonzepten, in denen die Kernfusion nur aufrechterhalten werden kann, wenn das Plasma von Magnetfeldern auf eine Ringbahn gezwungen wird, bewegt sich das Plasma im PSI-2 im Wesentlichen nur geradeaus, was die Analyse vereinfacht. Kernfusion findet hier nicht statt.

Die nächste Projektphase JULE-PSI ab dem Jahre 2015 planen die Forscher schon jetzt, denn es fehlt noch ein sehr wichtiger Aspekt: Die Wand im Fusionskraftwerk wird fortwährend mit Neutronen bestrahlt. Diese Neutronen entstehen bei der Kernfusion und tragen 80 Prozent der erzeugten Energie aus dem Plasma hinaus. „In den Wänden und in speziellen Materialien außerhalb der Brennkammer werden die Neutronen abgebremst und erwärmen dadurch das Material. Über einen Kühlkreislauf kann man die Wärme dann zur Dampferzeugung nutzen und eine Turbine zur Stromerzeugung antreiben“, erklärt Unterberg.

Der springende Punkt ist, so Unterberg: „Die Neutronen verändern die Materialeigenschaften der Wand, etwa die Struktur des Kristallgitters.“ Mit dem Nachfolgeexperiment JULE-PSI werden die Jülicher Forscher erstmals vorweg mit Neutronen bestrahlte Wandproben im Plasmadauerbetrieb untersuchen, um Erkenntnisse darüber zu gewinnen, welchen Einfluss die Neutronenbestrahlung auf die Wandeigenschaften hat. Das Pilotexperiment PSI-2 dient auch dazu, die späteren Abläufe bei JULE-PSI zu erproben und geeignete Standards zu entwickeln. Da das Wandmaterial durch den Neutronenbeschuss unter anderem auch radioaktiv wird, muss es in Speziallabors untersucht werden, wie es sie nur an wenigen Forschungsstätten weltweit gibt. „Gepaart mit unserem Know-how in der Materialforschung und der Plasma-Wand-Wechselwirkung sind wir für diese Untersuchungen prädestiniert. Es gibt bisher weltweit kaum eine andere Forschungseinrichtung, die das auf diesem Niveau kann. Deshalb hat das Forschungszentrum Jülich diese innerhalb der europäischen Fusionsforschung als wichtig identifizierte Aufgabe übernommen“, sagt Schorn.

Daten und Fakten zu PSI-2:
Elektrische Anschlussleistung: 350 Kilowatt
Plasmatemperatur: bis zu 200.000 Grad
Länge: 7 Meter
Gewicht: rund 3,3 Tonnen
Kosten: eine Millionen Euro für den Aufbau
Technisches Personal: 10 Mitarbeiter
Wärmeleistung des Plasmas auf die Wand: ein Megawatt pro Quadratmeter
Plasmateilchenstrom: 100 Trilliarden (10^23) Teilchen pro Quadratmeter und Sekunde

Neutralgasdruck: etwa ein Zehnmillionstel des Atmosphärendrucks

Informationen zur Fusionsforschung im Jülicher Institut für Energie- und Klimaforschung:

http://www.fz-juelich.de/fusion

Pressekontakt:
Kosta Schinarakis, Tel.: 02461 61 4771, k.schinarakis@fz-juelich.de
Erhard Zeiss, Tel.: 02461 61 1841, e.zeiss@fz-juelich.de
Das Forschungszentrum Jülich…
… betreibt interdisziplinäre Spitzenforschung, stellt sich drängenden Fragen der Gegenwart und entwickelt gleichzeitig Schlüsseltechnologien für morgen. Hierbei konzentriert sich die Forschung auf die Bereiche Gesundheit, Energie und Umwelt sowie Informationstechnologie. Einzigartige Expertise und Infrastruktur in der Physik, den Materialwissenschaften, der Nanotechnologie und im Supercomputing prägen die Zusammenarbeit der Forscherinnen und Forscher. Mit rund 4 600 Mitarbeiterinnen und Mitarbeitern gehört Jülich, Mitglied der Helmholtz-Gemeinschaft, zu den großen Forschungszentren Europas.

Kosta Schinarakis | Forschungszentrum Juelich
Weitere Informationen:
http://www.fz-juelich.de/fusion

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Harmonien in der Optoelektronik
21.07.2017 | Georg-August-Universität Göttingen

nachricht Von photonischen Nanoantennen zu besseren Spielekonsolen
20.07.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten