Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Curiosity geht Mars auf den Grund

03.08.2012
Max-Planck-Forscher suchen mit dem rollenden Labor nach Wasser und organischen Verbindungen

Er wiegt 900 Kilogramm, trägt zehn wissenschaftliche Instrumente an Bord und ist das leistungsfähigste Labor, das jemals zu unserem Nachbarplaneten geschickt wurde: der Rover Curiosity.


Neugierig auf den Mars: "Curiosity" ist der schwerste und leistungsfähigste Rover, der jemals zum roten Planeten geschickt wurde. © NASA/JPL-Caltech


Spürnase: Das Instrument "Sample Analysis at Mars (SAM)" vor seinem Einbau auf den Rover.
© NASA/GSFC

Mit ihm soll eine neue Ära der Marsforschung beginnen. Zum Team der offiziell Mars Science Laboratory genannten Mission der US-Weltraumagentur Nasa zählen auch Wissenschaftler aus dem Max-Planck-Institut für Sonnensystemforschung im niedersächsischen Katlenburg-Lindau. Neben der Suche nach organischen Verbindungen im Marsboden interessieren sie sich vor allem für Zusammensetzung und Beschaffenheit des Gesteins.

Der Mars ist der meistbesuchte Planet in unserem Sonnensystem: Seit den Landepionieren Viking 1 und 2, die 1975 im roten Wüstensand aufsetzten, haben vier weitere Raumsonden Daten von der Oberfläche des Planeten zur Erde gefunkt. Derzeit befinden sich drei funktionsfähige Satelliten in der Mars-Umlaufbahn.

Dennoch birgt unser Nachbarplanet noch immer viele Rätsel: Enthält der Boden kohlenstoffhaltige organische Substanzen? Gibt es gar Hinweise auf bakterielle Aktivitäten? Welche Prozesse haben das heutige Gesicht des Mars geformt? Und welche Rolle spielte dabei das Wasser, das einst in gewaltigen Flussbetten über den Planeten floss und stellenweise noch heute als Eis im Boden schlummert?

„Der Krater Gale, in dem Curiosity landen soll, ist ein perfekter Ausgangspunkt, um diesen Fragen nachzugehen“, sagt Walter Goetz vom Max-Planck-Institut für Sonnensystemforschung. Goetz nimmt als Mitglied des Wissenschaftsteams an der Mission teil. Der Krater liegt auf der südlichen Halbkugel ganz in der Nähe des Äquators und besitzt einen Durchmesser von 154 Kilometern. Er entstand vor mehr als drei Milliarden Jahren bei einem Meteoriteneinschlag.

Vor allem die Schichtstruktur des hohen Berges in der Kratermitte erlaubt Einblicke in vergangene Epochen der Marsevolution. Aufnahmen aus dem Orbit zeigen zudem Anzeichen für Erosion im unteren Teil des Berges. „Soweit wir das beurteilen können, legen Form und Mineralogie des Berges nahe, dass flüssiges Wasser die Strukturen, die wir heute sehen, mitgeprägt hat“, sagt Goetz.

Der Max-Planck-Forscher wird vor allem Messdaten der Kamera Mars Hand Lens Imager (MAHLI) nutzen. Das Instrument bietet eine Auflösung von 20 bis 30 Mikrometern pro Pixel und ermöglicht es dem Geologen, einzelne Sandkörner des Marsbodens unter die Lupe zu nehmen. „Größe, Form, Farbe und mineralogische Zusammensetzung der Partikel lassen Rückschlüsse zu, wie sich das Terrain in den vergangenen Milliarden Jahren entwickelt hat – etwa ob die Teilchen an Ort und Stelle gebildet wurden oder ob Wind sie in den Galekrater transportiert hat“, erklärt Walter Goetz. In den nächsten drei Monaten wird er die Mission am Jet Propulsion Laboratory (JPL) im kalifornischen Pasadena begleiten.
Zusätzlich setzt Walter Goetz auf Messdaten des Spektrometers Chemistry and Mineralogy (CheMin), das die Bodenproben mithilfe von Röntgenstrahlung untersucht. „Das Wissenschaftsteam in Pasadena wird die Daten aller Instrumente täglich sichten, um dann die Route des Rovers für den nächsten Tag zu bestimmen“, sagt der Forscher über die Aufgaben während der Mission.

Vom Max-Planck-Institut in Katlenburg-Lindau aus unterstützt zudem Fred Goesmann die Mission. Der Physiker ist als Wissenschaftler am Instrument Sample Analysis at Mars (SAM) beteiligt. „SAM ist kein einzelnes Instrument, sondern vielmehr ein komplexes, automatisiertes Labor“, sagt Goesmann. Eine ausgeklügelte Abfolge von Sieben, Öfen, Spektrometern und weiteren Messgeräten erlaubt es, Gas- und Bodenproben umfassend zu analysieren.
Hauptaufgabe des 38 Kilogramm schweren Komplexes ist es dabei, nach organischen Verbindungen zu suchen. „Sollte es einst Leben auf dem Mars gegeben haben, müsste es Spuren dieser Art hinterlassen haben“, so der Wissenschaftler.

Das Max-Planck-Institut für Sonnensystemforschung war seit 1996 an fünf Marsmissionen der amerikanischen und europäischen Weltraumbehörden beteiligt. Vor vier Jahren etwa spielte das Institut eine maßgebliche Rolle bei der Landemission Phoenix der Nasa. Die Kamera an Bord, der erstmals Aufnahmen gefrorenen Wassers im Marsboden gelangen, hatten Wissenschaftler und Ingenieure in Katlenburg-Lindau entwickelt und gebaut. Für die geplante Mission ExoMars der Esa entwickeln Max-Planck-Wissenschaftler derzeit ein Instrument, dass organische Moleküle auf der Marsoberfläche untersuchen soll.

Dr. Birgit Krummheuer | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/5930948/Mars_Curiosity

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie