Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Countdown für Planck läuft

02.02.2009
Max-Planck-Institut für Astrophysik schließt zehnjährige Arbeiten an der Software der europäischen Satellitenmission ab

Mit bisher unübertroffener Genauigkeit soll der Satellit Planck dem Echo des Urknalls lauschen und damit in die Kinderstube des Universums: Voraussichtlich am 16. April wird der Kundschafter an Bord einer Ariane-5-Rakete starten. Ziel der internationalen Mission unter Federführung der europäischen Weltraumagentur ESA ist die Vermessung des kosmischen Mikrowellen-Hintergrunds. Beteiligt an dem Projekt ist auch das Max-Planck-Institut für Astrophysik in Garching. Dort haben Forscher wichtige Software-Komponenten entwickelt, die jetzt an die Kollaboration übergeben wurden.


Abb. 1: Blickt 13,8 Milliarden Jahre in die Zeit zurück: Der Satellit Planck soll die kosmische Hintergrundstrahlung mit bisher unerreichter Präzision einfangen und damit Einblick in die Geburt des Universums gewähren. Bild: ESA


Abb. 2: So ähnlich wie diese Simulation könnte Planck das junge Universum im Licht der Mikrowellen aufzeichnen. Bild: MPA Planck Analysis Center

Alle Strukturen wie Galaxien, Galaxienhaufen und -filamente, die wir heute im Universum sehen, waren bereits 380 000 Jahre nach dem Urknall in Form von winzigen Fluktuationen der Materiedichte angelegt. Zu jenem Zeitpunkt wurde das Universum durchsichtig. Das dabei frei werdende Licht des Urknalls ist noch heute im Kosmos unterwegs und als kosmische Mikrowellenstrahlung messbar. Diese Strahlung bietet ein getreues Bild des Universums, wie es vor 13,8 Milliarden Jahren aussah - genau zu der Epoche, als es durchsichtig wurde.

Der Mikrowellen-Hintergrund, für dessen erste Vermessung der Physik-Nobelpreis 2006 verliehen wurde, zeigt diese ursprünglichen Dichtefluktuationen als winzige Temperaturvariationen. Diese wurden vor 40 Jahren von Rashid Sunyaev, heute Direktor am Max-Planck-Instituts für Astrophysik, vorhergesagt; 25 Jahre später hat sie der COBE-Satellit tatsächlich entdeckt.

Das Weltraumteleskop Planck soll diese Strahlung eineinhalb bis zweieinhalb Jahre lang an seinem Standort in der Nähe des sogenannten zweiten Lagrange-Punkts des Sonne-/Erde-Systems mit einem Hoch- und einem Niederfrequenz-Instrument und in insgesamt neun verschiedenen Frequenzbändern vermessen. Durch die Bestimmung von Temperaturvariationen wird Planck nicht nur die Frühphase unseres Universums untersuchen. Aus den Daten erhoffen sich die Wissenschaftler auch Antworten auf wichtige Fragen der Kosmologie: Was genau spielte sich beim Urknall ab? Aus welchen Materie-, Strahlungs- und Energieformen besteht das heutige Weltall? Wie alt ist es, und wie haben sich seine Strukturen gebildet?

Außerdem könnten die Messdaten dazu beitragen, die Inflationstheorie zu überprüfen. Bevor das Universum ganze 10-35 Sekunden alt war, soll sich der Raum explosionsartig aufgebläht haben. Winzige Quantenfluktuationen eines diese Raumexplosion antreibenden hypothetischen Energiefelds sollten die Saat jener im Mikrowellenbereich sichtbaren Dichtefluktuationen angelegt haben, aus denen die heutigen Galaxien entstanden sind.

"Die Inflationstheorie mit ihrem Anspruch, die grundlegenden Eigenschaften unseres heutigen Kosmos komplett auf diese bizarre Expansionsepoche zurückzuführen, ist eine unglaublich anmutende Vorstellung, die unbedingt experimentell überprüft werden muss", sagt Torsten Enßlin, Kosmologe und Manager der deutschen Planck-Beteiligung, die am Garchinger Max-Planck-Institut angesiedelt ist.

Zwar mag man diese Epoche niemals direkt vermessen können, um die Inflationstheorie zu überprüfen. Doch die messbaren Temperaturfluktuationen im Mikrowellenbereich bergen Botschaften aus jener frühesten Epochen, die sich mittels präziser Vermessung durch Planck und statistischer Datenanalyse herauslesen lassen. Aufschlussreiche Ergebnisse verspricht sich das Projekt durch die genaue Vermessung der Polarisation dieser Strahlung. Sie könnte ein fantastisches Fenster in die Frühphase des Universums eröffnen. "Heutige Vorstellungen von den ersten Sekundenbruchteilen im Leben des Universums lassen sich durch solche präzise Polarisationsmessungen überprüfen, bestätigen oder komplett revidieren", sagt der Garchinger Wissenschaftler.

Das Max-Planck-Institut für Astrophysik vertritt Deutschland im Planck-Konsortium und übernahm einen Teil der Entwicklung der Software. So wurde für die Zentren in Paris und Triest in den vergangenen zehn Jahre ein Missions-Simulationssoftware-Paket entwickelt: Diese Simulation erzeugt synthetische Datenströme, die den echten des Satelliten gleichen. Allerdings kennt man für sie die genauen Eigenschaften jenes Universums, das sie hervorgebracht haben könnte. Somit ermöglicht diese Software ein Testen und Optimieren der Datenverarbeitung - und die ist recht komplex.

"Nach der Überprüfung der täglich vom Satelliten zur Erde gefunkten Daten und ihrer Kalibration werden für die neun Frequenzbänder der Instrumente individuelle Himmelskarten erzeugt. Dies geschieht je nach Wellenlängenbereich in unterschiedlichen Datenverarbeitungszentren", sagt Wolfgang Hovest, Softwareentwickler in der Garchinger Planck-Gruppe. In den beiden Prozessierungszentren in Paris und Triest werden diese Karten anschließend in unterschiedliche Quellen wie galaktische Radiostrahlung, Staubstrahlung und kosmische Mikrowellenstrahlung umgewandelt.

Für die Koordination der komplexen Datenverarbeitungsprozesse entwickelte das Planck-Team zudem eine Datenbank-gestützte grafische Workflow Engine, den Planck Process Coordinator (kurz ProC genannt). Dieser ist ein wesentlicher Bestandteil der Software-Infrastruktur des Projekts. Der ProC wird zur Konstruktion, Ausführung und Überwachung der Datenanalyseschritte benötigt.

Mit Simulationspaket und Prozesskoordinator steuert das Max-Planck-Institut für Astrophysik wesentliche Komponenten zur Planck-Mission bei. Als der führende deutsche Partner innerhalb des Projekts, das sowohl Informatiker als auch Astrophysiker vor große Herausforderungen stellt, wird sich das Institut selbst intensiv an der wissenschaftlichen Auswertung der Daten beteiligen. Neben den im Mittelpunkt stehenden kosmologischen Ergebnissen wird es dabei auch um astrophysikalische Objekte im engeren Sinne gehen - etwa um die Untersuchung von Galaxienhaufen oder um aktive galaktische Kerne.

Die Planck Mission wird von dem europäisch-nordamerikanischen Planck-Konsortium unter Koordination der ESA durchgeführt. Beteiligt sind unter anderem Frankreich, Italien, Deutschland, Großbritannien, Dänemark, Finnland, Schweiz, Spanien, die USA und Kanada. Das Projekt ist in zwei Konsortien aufgeteilt, die das Hochfrequenz- und das Niederfrequenzinstrument entwickelten und betreuen, und die durch Jean-Loup Puget vom IAS in Paris und Nazzareno Mandolesi am IASF/CNR in Bologna geleitet werden. Projektwissenschaftler der ESA ist Jan Tauber in ESTEC in den Niederlanden. Die deutsche Beteiligung am Max-Planck-Institut für Astrophysik (MPA) wird durch das Deutsche Zentrum für Luft- und Raumfahrt (DLR) sowie der Max-Planck Gesellschaft gefördert.

Planck wird zusammen mit dem Herschel-Satelliten mit einer Ariane-5-Rakete vom ESA-Weltraumbahnhof Kourou in Französisch-Guayana (Südamerika) gestartet werden. Voraussichtlicher Starttermin ist der 16. April. Der Transfer zum zweiten Lagrange-Punkt des Sonne-/Erde-Systems wird etwa drei Monate dauern. Es sind zwei Himmelsdurchmusterungen zu je sechs Monaten geplant; eine längere Laufzeit mit bis zu vier Durchmusterungen könnte je nach Kühlmittelverbrauch (Helium-3) möglich sein. Alle wissenschaftlichen Daten sollen nach Abschluss der Mission öffentlich werden.

Dr. Christina Beck | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erforschung von Elementarteilchen in Materialien
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Vermeintlich junger Stern entpuppt sich als galaktischer Greis
16.01.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau