Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Chip-basierte, eine Oktave umspannende optische Lineale

08.08.2011
Wissenschaftler am MPQ entwickeln eine Oktave umspannenden Frequenzkamm mit Mikroresonatoren

Die vor einigen Jahren von Prof. Theodor W. Hänsch am Max-Planck-Institut für Quantenoptik entwickelte Frequenzkammtechnik hat sowohl die Grundlagenforschung als auch die Laserentwicklung und deren Anwendungen stark vorangebracht, da sie die Genauigkeit, optische Frequenzen zu bestimmen, um Größenordnungen gesteigert hat.


Erzeugung eines eine Oktave umspannenden Frequenzkamms in Mikroresonatoren. Teil (a) zeigt den experimentellen Aufbau mit einer Nano-Faser aus Glas und einem Silizium-Chip mit optischen Resonatoren. Ein mit einem Elektronenmikroskop aufgenommenes Bild eines dieser Resonatoren ist in Ausschnitt (b) zu sehen. Ausschnitt (c) zeigt das optische Spektrum eines in einem solchen Resonator erzeugten, eine Oktave umspannenden Frequenzkamms.

Ein Wissenschaftlerteam um Dr. Tobias Kippenberg, ehemals Leiter der Max-Planck-Forschungsgruppe „Laboratory of Photonics and Quantum Measurements“ am MPQ und mittlerweile Associate Professor an der Ecole Polytechnique Fédérale de Lausanne (EPFL), hat bereits vor einigen Jahren erstmals optische Frequenzkämme mit Chip-basierten mikrometergroßen Toroiden aus Quarzglas erzeugt. Hier ist es den Wissenschaftlern jetzt gelungen, einen Frequenzkamm zu erzeugen, der sowohl mehr als eine Oktave umspannt als auch über einen großen Frequenzbereich präzise abstimmbar ist (PRL 107, 063901, 1. August 2011). Dies lässt praktische Anwendungen wie die Vielkanal-Datenübertragung in der Telekommunikation oder die hochpräzise Kalibration von Spektrographen in der Astrophysik in Reichweite kommen.

Ein Frequenzkamm ist eine Lichtquelle, die wie ein Regenbogen ein großes Spektrum von Farben umfasst. Allerdings liegen die Frequenzen nicht kontinuierlich, vielmehr enthält das Licht bis zu einer Million sehr dicht benachbarter Spektrallinien, deren Abstand immer gleich und genau bekannt ist. Wenn man diesen „Kamm“ mit einem anderen Laserstrahl überlagert, dann lässt sich aus der resultierenden Schwebung dessen Frequenz mit extrem hoher Präzision bestimmen. Der von Prof. Hänsch entwickelte Frequenzkamm beruht auf einem Modenkopplungsprozess in Kurzpuls-Lasern. Er ist mit vielen optischen Bauelementen recht aufwendig ausgestattet, auch wenn die Geräte heute schon relativ kompakt gebaut und kommerziell erhältlich sind. Die Menlo Systems GmbH, eine Firmenausgründung des MPQ, vertreibt die Frequenzkammtechnik inzwischen weltweit.

Bereits vor einigen Jahren ist es der mit der Abteilung Laserspektroskopie von Prof. Hänsch verbundenen Gruppe „Laboratory of Photonics and Quantum Measurements“– in Zusammenarbeit mit Dr. Ronald Holzwarth von der Menlo Systems GmbH – gelungen, einen Frequenzkamm mit Hilfe eines winzigen Mikroresonators zu erzeugen: einem auf einem Silizium-Chip hergestellten torusförmigen Glas-Resonator mit einem Durchmesser von weniger als hundert Mikrometern.

Mit einem „Nano-Draht“ aus Glas koppeln die Wissenschaftler Licht eines Diodenlasers in diesen Hohlraum ein, wo es immer wieder umläuft und lange Zeit gespeichert wird. Aufgrund der dabei auftretenden extrem hohen Lichtintensitäten – sprich Photonendichten –kommt es zu dem sogenannten „Vierwellenmischen“ durch den Kerr-Effekt: zwei Lichtquanten gleicher Energie wandeln sich in zwei Photonen um, von denen das eine Lichtquant eine höhere, das andere eine niedrigere als die ursprüngliche Energie hat. Dabei können die neu erzeugten Lichtfelder ihrerseits mit den ursprünglichen Lichtfeldern interagieren und weitere Frequenzen erzeugen, so dass kaskadendartig ein breites Spektrum von Frequenzen entsteht. In dem hier beschriebenen Experiment haben Dr. Pascal Del’Haye (MPQ) und Tobias Herr (EPFL) im Rahmen ihrer Doktorarbeit die Geometrie des Resonators so optimiert, dass die Dispersion kompensiert wird, d.h. die Umlaufzeit für alle Farben des Lichtes gleich ist. Damit erzeugt der Mikroresonator erstmals Strahlung über einen Frequenzbereich von mehr als einer Oktave, von 900 bis 2170 nm (nahes Infrarot). Wie bei einem Klavier entspricht ein Abstand von einer Oktave einer Verdopplung der Frequenz.

Über eine Änderung der Intensität des eingekoppelten Lichtes lassen sich die Frequenzen des Kammes simultan verschieben. Denn mit höheren Intensitäten erwärmt sich der Glas-Resonator um bis zu 800 Grad Celsius, wodurch er sich einerseits ausdehnt, aber auch seinen Brechungsindex ändert. Beides verschiebt die Linien des Frequenzkamms zu niedrigeren Frequenzen, d.h. längeren Wellenlängen. Diese Neuerungen, d.h. die große Bandbreite des Spektrums und die Möglichkeit der Frequenzverschiebung ist eine wichtige Voraussetzung um den Frequenzkamm zu stabilisieren: dazu wird der untere Frequenzbereich verdoppelt und mit dem oberen verglichen. Diese Eigenschaft erlaubt hochpräzise Anwendungen in der Metrologie.

Auch die optische Telekommunikation kann von der neuen Errungenschaft profitieren: Während beim herkömmlichen Frequenzkamm die Linien extrem dicht liegen und recht lichtschwach sind, haben die Spektrallinien des monolithischen Frequenzkamms einen Abstand von ungefähr 850 Gigahertz und pro Linie eine Leistung von einem Milliwatt. Dies entspricht den Anforderungen für die „Träger“ der Datenkanäle in der faserbasierten optischen Telekommunikation. Aufgrund der Verstimmbarkeit und der hohen Bandbreite eignet sich der Apparat auch für die hochpräzise Kalibration von Spektrometern in der Astrophysik. Dank der vielen Möglichkeiten interessieren sich mittlerweile viele Arbeitsgruppen weltweit dafür, mit solchen Mikroresonatoren photonische Geräte zu miniaturisieren. Dabei kommen ganz unterschiedliche Materialien wie polierte Kristalle, kurze hochreflektierende Fasern sowie auf Computerchiptechnik beruhende Siliziumstrukturen zum Einsatz. [Olivia Meyer-Streng]

Prof. Tobias J. Kippenberg (PhD)
Ecole Polytechnique Fédérale de Lausanne (EPFL)
(Swiss Federal Institute of Technology Lausanne)
Associate Professor
Tel.: + 41 21 69 34428 (CH) / +41795350016
E-Mail: tobias.kippenberg@epfl.ch
http://k-lab.epfl.ch/
Dr. Pascal Del‘Haye
Max-Planck-Institut für Quantenoptik,
Hans-Kopfermann-Straße 1
85748 Garching
Tel.: +49 (0) 89 / 32905 286
Fax: +49 (0) 89 / 32905 200
E-Mail: pascal.delhaye@mpq.mpg.de
Max-Planck-Institut für Quantenoptik
Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Tel.:+49(0)8932 905-213
Fax:+49(0)8932 905-200
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://k-lab.epfl.ch/
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Harmonien in der Optoelektronik
21.07.2017 | Georg-August-Universität Göttingen

nachricht Von photonischen Nanoantennen zu besseren Spielekonsolen
20.07.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten