Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Chimären in dynamischen Netzwerken

17.07.2012
Vorhergesagte neuartige Strukturen wurden erstmalig im Experiment nachgewiesen / Veröffentlichung in der renommierten Zeitschrift „Nature Physics"

Von Physikern der TU Berlin vorhergesagte neuartige Strukturen wurden erstmalig von Wissenschaftlern der University of Maryland (USA) experimentell nachgewiesen und gemeinsam detailliert analysiert. Die Ergebnisse dieser internationalen Zusammenarbeit wurden nun in der renommieren Fachzeitschrift „Nature Physics“ online veröffentlicht: http://dx.doi.org/10.1038/NPHYS2372.

Bislang konnten diese neuartigen Strukturen nur im Computer beobachtet werden. Es handelt sich dabei um sogenannte Chimera-Zustände. Diese können in einem Ring identischer Einzelsysteme mit nichtlokaler, das heißt sich über mehrere Elemente erstreckender Kopplung erzeugt werden. Sie zeigen gleichzeitig Bereiche hoher Synchronisation neben völlig irregulären, räumlich chaotischen Bereichen. Sie sind benannt nach der „Chimäre", einem feuerspeienden Fabelwesen der griechischen Mythologie, das den Kopf eines Löwen, den Körper einer Ziege und den Schwanz einer Schlange hat.

Die Chimera-Zustände werden in der aktuellen Forschung über komplexe Netzwerke heftig diskutiert, da ein Verständnis der komplizierten nichtlinearen Dynamik von Netzwerken für viele Anwendungen in der Physik (gekoppelte Laser), Biologie (neuronale Netzwerke im Gehirn) und der Technologie (Kommunikations- und Stromnetze) wichtig ist.

Dr. Iryna Omelchenko, wissenschaftliche Mitarbeiterin am Institut für Theoretische Physik der TU Berlin, beobachtete bereits 2011 anhand von numerischen Simulationen unerwartete Zustände von symmetrisch gekoppelten, zeitlich diskreten Systemen. Im Unterschied zu zeitkontinuierlichen Modellen, die häufig durch Differenzialgleichungen beschrieben werden, handelt es sich hierbei um eine iterierte Abbildung, die aus einer Abfolge von diskreten Zuständen besteht.

Unter Leitung von Prof. Dr. Eckehard Schöll und Dr. Philipp Hövel entdeckte Dr. Iryna Omelchenko, dass – trotz perfekter Symmetrie in der Kopplung und identischer Systemparameter – ein vollständig synchroner Zustand durch Veränderung der Reichweite und Stärke der Kopplung einen Übergang zu räumlich inhomogenen Profilen bis hin zu räumlichem Chaos erfährt. Die Entstehung des räumlichen Chaos erfolgt dabei über die Chimera-Zustände, die sowohl reguläre, synchronisierte als auch chaotische, desynchronisierte Abschnitte aufweisen. Ursprünglich in der Simulation kontinuierlicher Systeme gefunden, weist dies auf ein universelles Verhalten in einer Vielzahl unterschiedlicher Modellklassen hin.

Die wissenschaftlichen Arbeiten von Iryna Omelchenko finden im Rahmen der Forschungen der Nachwuchsgruppe des Bernstein Center for Computational Neuroscience Berlin und des Sonderforschungsbereiches Sfb 910 „Kontrolle selbstorganisierender nichtlinearer Systeme: Theoretische Methoden und Anwendungskonzepte“ der TU Berlin statt. Philipp Hövel leitet die Bernstein-Nachwuchsgruppe. Eckehard Schöll ist Sprecher des Sfb 910, der von der Deutschen Forschungsgemeinschaft über vier Jahre mit sieben Millionen Euro gefördert wird.

Der bisher rein theoretisch untersuchte Übergang, der in dem führenden internationalen Physikjournal "Physical Review Letters" publiziert wurde (Phys. Rev. Lett. 106, 234102 (2011)), konnte jüngst in einem optischen Experiment erstmals experimentell realisiert werden. In dem Experiment der Arbeitsgruppe von Prof. Rajarshi Roy (University of Maryland) wird ein durch einen Laserstrahl erzeugtes Intensitätsmuster in einem Netzwerk aus Flüssigkristallzellen von einer Kamera aufgenommen und zurückgekoppelt. Entscheidend dabei ist, dass verschiedene Bereiche des Musters getrennt angesteuert werden können. Dies ermöglicht die gewünschte interne Kopplung und die systematische Veränderung der Parameter. Neben dem experimentellen Nachweis gelang den US-Wissenschaftlern gemeinsam mit ihren TU-Kollegen außerdem eine einfache mathematische Beschreibung und Analyse der beobachteten Szenarien.

Homepage des Sonderforschungsbereichs 910: http://www.itp.tu-berlin.de/sfb910

3865 Zeichen

Weitere Informationen erteilt Ihnen gern: Prof. Dr. Eckehard Schöll, PhD, Institut für Theoretische Physik der TU Berlin, Hardenbergstr. 36, 10623 Berlin, Tel.: 030/314-23500, Fax: 030/314-21130, E-Mail: schoell@physik.tu-berlin.de

Die Medieninformation der TU Berlin im Überblick:
www.pressestelle.tu-berlin.de/medieninformationen/
Service für Journalistinnen und Journalisten:
Aufnahme in den Medienverteiler: www.tu-berlin.de/?id=1888
Veranstaltungen: www.tu-berlin.de/?id=115296
Forschungsberichte: www.tu-berlin.de/?id=113453
TU Berlin bei twitter: www.twitter.com/TUBerlin_PR
TU Berlin bei youtube: www.youtube.com/tuberlintv

Stefanie Terp | idw
Weitere Informationen:
http://dx.doi.org/10.1038/NPHYS2372
http://www.itp.tu-berlin.de/sfb910

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht ALMA beginnt Beobachtung der Sonne
18.01.2017 | ESO Science Outreach Network - Haus der Astronomie

nachricht Magnetische Kraft von einzelnen Antiprotonen mit höchster Genauigkeit bestimmt
18.01.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

ALMA beginnt Beobachtung der Sonne

18.01.2017 | Physik Astronomie

Textiler Hochwasserschutz erhöht Sicherheit

18.01.2017 | Architektur Bauwesen

Neues Forschungsspecial zu Meeren, Ozeanen und Gewässern

18.01.2017 | Geowissenschaften