Chaotische Lichtpulse in winzigen Quantenbauteilen

Während in der makroskopischen Welt Chaos in der Regel lieber vermieden wird, können sich Quantenphysiker über diesen Zustand geradezu begeistern: „Chaos ist eine hochinteressante Eigenschaft unserer Systeme“, so Prof. Dr. Stephan Reitzenstein vom Institut für Festkörperphysik an der TU Berlin.

Neben ihrer faszinierenden Physik spielen chaotische Systeme in der abhörsicheren Informationsübertragung eine große Rolle, da mit ihnen unter anderem Zufallszahlen für die Verschlüsselung von Daten generiert werden können. Für die Erzeugung chaotischer Signale wird unter anderem ein selbstpulsender Laser benötigt, also eine Lichtquelle, die unregelmäßig (chaotisch) Photonen emittiert, und ein entsprechend sensibler Detektor.

Prof. Dr. Stephan Reitzenstein und seinem Team in Kooperation mit der Arbeitsgruppe von Professor Lüdge und Kollegen der Universität Würzburg ist es jetzt im Rahmen seines ERC Consolidator Grants „EXQUISITE“ gelungen, Mikrolaser und Mikrodetektoren in einem Abstand von wenigen µm auf einem gemeinsamen Mikrochip zu integrieren und zu koppeln. Das gesamte System ist so winzig, dass es nur unter dem Mikroskop sichtbar ist.

In einer gerade erschienenen Veröffentlichung in dem renommierten Journal Optica, demonstrieren die Wissenschaftler, wie in diesem System das emittierte Laserlicht vor Ort detektiert und elektrisch verstärkt dem Laser wieder zugeführt wird. „Dieses kleine rückgekoppelte optische Netzwerk ist bei geeigneten Betriebsparametern äußerst instabil, was zu einem faszinierenden chaotischen Emissionsverhalten führt“, so Stephan Reitzenstein.

Miniaturisierte Halbleiterbauelemente auf engstem Raum gekoppelt bilden eine wichtige Grundlage für die moderne Informationstechnologie. In der aktuellen Forschung erreicht man dabei bereits das Quantenregime, in dem klassisch nicht erklärbare physikalische Effekte eine zentrale Rolle in der Bauteilfunktion spielen können.

Hier hat das entwickelte Mikrolaser-Mikrodetektor Konzept als integrierte Lichtquelle großes Anwendungspotential. So zeigt diese Lichtquelle bei optimierten Betriebsparametern „Selbstpulsen“, was zukünftig für die gezielt steuerbare Emission einzelner Lichtteilchen (Photonen) in äußerst kompakten Einzelphotonenquellen genutzt werden soll. Dies kann ebenfalls Anwendung in der Datenübertragung finden – in diesem Fall in der vollkommen abhörsicheren Quantenkommunikation durch die Informationsübertragung mittels einzelner Photonen.

Pierce Munnelly, Benjamin Lingnau, Matthias M. Karow, Tobias Heindel, Martin Kamp, Sven Höfling, Kathy Lüdge, Christian Schneider, and Stephan Reitzenstein: On-chip optoelectronic feedback in a micropillar laser-detector assembly, Optica 4, 303-306 (2017).
https://www.osapublishing.org/optica/abstract.cfm?uri=optica-4-3-303

Weitere Informationen erteilt Ihnen gern:
Prof. Dr. Stephan Reitzenstein
Technische Universität Berlin
Institut für Festkörperphysik
Tel.: +49 30 314-79704, Sekr: -22001
E-Mail: stephan.reitzenstein@physik.tu-berlin.de

Media Contact

Stefanie Terp idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.tu-berlin.de/

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer