Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Chaos im Mikrolaser

22.06.2011
Einen Mikrolaser mit einzigartigen Eigenschaften haben Würzburger Physiker realisiert. Zudem ist es ihnen gelungen, den Laser zu chaotischem Verhalten zu bringen. In Zukunft lässt sich das möglicherweise für eine neue, abhörsichere Art der Datenübertragung nutzen.

Im Mikrokosmos chaotisches Verhalten auslösen: Das haben Stephan Reitzenstein und sein Team vom Physikalischen Institut der Universität Würzburg in Kooperation mit dem israelischen Kollegen Ido Kanter geschafft, wie die Zeitschrift „Nature Communications“ aktuell berichtet. Die Forscher schickten dafür bei einem winzig kleinen Laser beständig einen Teil des ausgestrahlten Lichts in den Laser zurück – und brachten so den Prozess der Lichtemission „aus dem Takt“. Der Mikrolaser gab fortan Lichtteilchen (Photonen) in einer chaotischen Pulsfolge ab.


Ein Quantenpunkt-Mikrolaser schickt Licht aus, das über einen Spiegel gezielt in den Laser zurückgeworfen wird. Das stört den Laserbetrieb derart, dass es zu einem chaotischen Emissionsverhalten kommt. Rechts das Ergebnis einer Messung zur Photonenstatistik, aus der Physiker eine chaotische Pulsfolge erkennen – denn ohne Chaos würden überhaupt keine Pulse auftreten. Bild: Ferdinand Albert

„Dieses Chaos ist aus grundlagenphysikalischer Sicht äußerst interessant“, erklärt Reitzenstein. Aber die gezielte Rückkopplung biete auch Anwendungsmöglichkeiten. „Sie könnte in Zukunft für optische Verstärker und Schalter eingesetzt werden. Außerdem verspricht die Gegenkopplung zweier Mikrolaser über eine weite Strecke eine Synchronisation der chaotischen Pulsfolge, und damit könnte man eine neuartige, abhörsichere Art der Datenübertragung realisieren.“

Mikrolaser made in Würzburg

Die Mikrolaser werden mit einem ausgeklügelten Verfahren im Mikrostrukturlabor des Lehrstuhls für Technische Physik hergestellt. Sie sehen aus wie winzige Türme mit einem Durchmesser von weniger als einem Zehntel eines menschlichen Haares, und sie bestehen aus einer speziellen Abfolge von extrem dünnen Halbleiterschichten. Durch einen aufwändig hergestellten Ringkontakt lassen sie sich elektrisch betreiben.

Im Zentrum der Mikrolaser werden bei der Herstellung spezielle Nano-Strukturen angebracht, die Licht abgeben können, so genannte Quantenpunkte. Ihre Eigenheit: „Die Mikrolaser sind so konstruiert, dass die Photonen, die von den Quantenpunkten emittiert werden, sich mit besonders hoher Wahrscheinlichkeit in die Lasermode einkoppeln und so für einen sehr effizienten Laserbetrieb nutzbar sind“, wie Reitzenstein sagt.

Nah dran am ultimativen Modell

Wegen ihrer speziellen Konstruktion lassen sich die Würzburger Mikrolaser mit wenigen Mikroampere und nur etwa zehn Quantenpunkten betreiben. In gewöhnlichen Halbleiterlasern seien dagegen Pumpströme im Milliampere-Bereich sowie einige 1.000 bis 10.000 Quantenpunkte nötig.

„Weltweit wird intensiv geforscht, um einen ‚ultimativen‘ Mikro- oder Nanolaser zu realisieren, der lediglich einen einzigen Quantenpunkt als aktives Medium enthält“, erklärt Reitzenstein. Diesem Ziel seien die Würzburger Physiker mit ihrem Modell nun schon sehr nahe gekommen.

Chaotische Pulsfolge erzeugt

Derart „hochgezüchtete“ Quantenpunkt-Mikrolaser reagieren sehr empfindlich auf Fluktuationen bei der Menge der Lichtteilchen im Laser-Resonator. So kann selbst die Emission eines einzelnen Photons den Laserbetrieb durcheinanderwirbeln. Nun haben die Wissenschaftler den Spieß umgedreht und das ausgestrahlte Licht mit einem Spiegel beständig, präzise und kontrolliert auf den Mikrolaser zurückgeworfen, um dessen Betrieb zu stören.

Dabei zeigte sich: Wenn die Laser wenige zehn Nanowatt Lichtleistung ausstrahlen, ist der Einfluss der Rückkopplung nicht direkt messbar. „Vielmehr sind aufwändige Messungen zur Photonenstatistik notwendig, um das erwartete chaotische Verhalten nachzuweisen“, so Reitzenstein. Doch damit hatten die Physiker Erfolg: Sie konnten nachweisen, dass eine Störung des Lasers zu einer chaotischen Pulsfolge führt, bei der jeder Lichtpuls nur etwa 100 Photonen enthält.

Die nächsten Forschungsschritte

„Aktuell bereiten wir Experimente zur Synchronisation zweier Laser bis hin zum Quantenlimit von lediglich einem hin- und herlaufenden Photon vor“, sagt Reitzenstein. „Gelingt uns das, ist ein weiterer Schritt hin zu einem fundamentalen Verständnis der Synchronisation und zu einer abhörsicheren Datenübertragung getan.“

Und noch eine weitere Hürde gilt es zu nehmen: Derzeit funktionieren die Mikrolaser nur in großer Kälte, bei weniger als minus 150 Grad Celsius. Ein Betrieb bei Raumtemperatur sollte aber möglich sein, wenn man die Quantenpunkte für diesen Zweck optimiert. Dieses Ziel verfolgen die Physiker aktuell in einem eigenen Projekt.

„Observing chaos for quantum-dot microlasers with external feedback”, Ferdinand Albert, Caspar Hopfmann, Stephan Reitzenstein, Christian Schneider, Sven Höfling, Lukas Worschech, Martin Kamp, Wolfgang Kinzel, Alfred Forchel & Ido Kanter, Nature Communications, doi 10.1038/ncomms1370

Kontakt

Dr. Stephan Reitzenstein, Physikalisches Institut der Universität Würzburg,
T (0931) 31-85116, stephan.reitzenstein@physik.uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

Jenaer Akustik-Tag: Belastende Geräusche minimieren - für den Schutz des Gehörs

27.04.2017 | Veranstaltungen

Ballungsräume Europas

26.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

VLC 200 GT von EMAG: Neue passgenaue Dreh-Schleif-Lösung für die Bearbeitung von Pkw-Getrieberädern

27.04.2017 | Maschinenbau

Induktive Lötprozesse von eldec: Schneller, präziser und sparsamer verlöten

27.04.2017 | Maschinenbau

Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

27.04.2017 | Informationstechnologie