Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Chaos im Mikrolaser

22.06.2011
Einen Mikrolaser mit einzigartigen Eigenschaften haben Würzburger Physiker realisiert. Zudem ist es ihnen gelungen, den Laser zu chaotischem Verhalten zu bringen. In Zukunft lässt sich das möglicherweise für eine neue, abhörsichere Art der Datenübertragung nutzen.

Im Mikrokosmos chaotisches Verhalten auslösen: Das haben Stephan Reitzenstein und sein Team vom Physikalischen Institut der Universität Würzburg in Kooperation mit dem israelischen Kollegen Ido Kanter geschafft, wie die Zeitschrift „Nature Communications“ aktuell berichtet. Die Forscher schickten dafür bei einem winzig kleinen Laser beständig einen Teil des ausgestrahlten Lichts in den Laser zurück – und brachten so den Prozess der Lichtemission „aus dem Takt“. Der Mikrolaser gab fortan Lichtteilchen (Photonen) in einer chaotischen Pulsfolge ab.


Ein Quantenpunkt-Mikrolaser schickt Licht aus, das über einen Spiegel gezielt in den Laser zurückgeworfen wird. Das stört den Laserbetrieb derart, dass es zu einem chaotischen Emissionsverhalten kommt. Rechts das Ergebnis einer Messung zur Photonenstatistik, aus der Physiker eine chaotische Pulsfolge erkennen – denn ohne Chaos würden überhaupt keine Pulse auftreten. Bild: Ferdinand Albert

„Dieses Chaos ist aus grundlagenphysikalischer Sicht äußerst interessant“, erklärt Reitzenstein. Aber die gezielte Rückkopplung biete auch Anwendungsmöglichkeiten. „Sie könnte in Zukunft für optische Verstärker und Schalter eingesetzt werden. Außerdem verspricht die Gegenkopplung zweier Mikrolaser über eine weite Strecke eine Synchronisation der chaotischen Pulsfolge, und damit könnte man eine neuartige, abhörsichere Art der Datenübertragung realisieren.“

Mikrolaser made in Würzburg

Die Mikrolaser werden mit einem ausgeklügelten Verfahren im Mikrostrukturlabor des Lehrstuhls für Technische Physik hergestellt. Sie sehen aus wie winzige Türme mit einem Durchmesser von weniger als einem Zehntel eines menschlichen Haares, und sie bestehen aus einer speziellen Abfolge von extrem dünnen Halbleiterschichten. Durch einen aufwändig hergestellten Ringkontakt lassen sie sich elektrisch betreiben.

Im Zentrum der Mikrolaser werden bei der Herstellung spezielle Nano-Strukturen angebracht, die Licht abgeben können, so genannte Quantenpunkte. Ihre Eigenheit: „Die Mikrolaser sind so konstruiert, dass die Photonen, die von den Quantenpunkten emittiert werden, sich mit besonders hoher Wahrscheinlichkeit in die Lasermode einkoppeln und so für einen sehr effizienten Laserbetrieb nutzbar sind“, wie Reitzenstein sagt.

Nah dran am ultimativen Modell

Wegen ihrer speziellen Konstruktion lassen sich die Würzburger Mikrolaser mit wenigen Mikroampere und nur etwa zehn Quantenpunkten betreiben. In gewöhnlichen Halbleiterlasern seien dagegen Pumpströme im Milliampere-Bereich sowie einige 1.000 bis 10.000 Quantenpunkte nötig.

„Weltweit wird intensiv geforscht, um einen ‚ultimativen‘ Mikro- oder Nanolaser zu realisieren, der lediglich einen einzigen Quantenpunkt als aktives Medium enthält“, erklärt Reitzenstein. Diesem Ziel seien die Würzburger Physiker mit ihrem Modell nun schon sehr nahe gekommen.

Chaotische Pulsfolge erzeugt

Derart „hochgezüchtete“ Quantenpunkt-Mikrolaser reagieren sehr empfindlich auf Fluktuationen bei der Menge der Lichtteilchen im Laser-Resonator. So kann selbst die Emission eines einzelnen Photons den Laserbetrieb durcheinanderwirbeln. Nun haben die Wissenschaftler den Spieß umgedreht und das ausgestrahlte Licht mit einem Spiegel beständig, präzise und kontrolliert auf den Mikrolaser zurückgeworfen, um dessen Betrieb zu stören.

Dabei zeigte sich: Wenn die Laser wenige zehn Nanowatt Lichtleistung ausstrahlen, ist der Einfluss der Rückkopplung nicht direkt messbar. „Vielmehr sind aufwändige Messungen zur Photonenstatistik notwendig, um das erwartete chaotische Verhalten nachzuweisen“, so Reitzenstein. Doch damit hatten die Physiker Erfolg: Sie konnten nachweisen, dass eine Störung des Lasers zu einer chaotischen Pulsfolge führt, bei der jeder Lichtpuls nur etwa 100 Photonen enthält.

Die nächsten Forschungsschritte

„Aktuell bereiten wir Experimente zur Synchronisation zweier Laser bis hin zum Quantenlimit von lediglich einem hin- und herlaufenden Photon vor“, sagt Reitzenstein. „Gelingt uns das, ist ein weiterer Schritt hin zu einem fundamentalen Verständnis der Synchronisation und zu einer abhörsicheren Datenübertragung getan.“

Und noch eine weitere Hürde gilt es zu nehmen: Derzeit funktionieren die Mikrolaser nur in großer Kälte, bei weniger als minus 150 Grad Celsius. Ein Betrieb bei Raumtemperatur sollte aber möglich sein, wenn man die Quantenpunkte für diesen Zweck optimiert. Dieses Ziel verfolgen die Physiker aktuell in einem eigenen Projekt.

„Observing chaos for quantum-dot microlasers with external feedback”, Ferdinand Albert, Caspar Hopfmann, Stephan Reitzenstein, Christian Schneider, Sven Höfling, Lukas Worschech, Martin Kamp, Wolfgang Kinzel, Alfred Forchel & Ido Kanter, Nature Communications, doi 10.1038/ncomms1370

Kontakt

Dr. Stephan Reitzenstein, Physikalisches Institut der Universität Würzburg,
T (0931) 31-85116, stephan.reitzenstein@physik.uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Der überraschend schnelle Fall des Felix Baumgartner
14.12.2017 | Technische Universität München

nachricht Eine blühende Sternentstehungsregion
14.12.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltrekord: Jülicher Forscher simulieren Quantencomputer mit 46 Qubits

15.12.2017 | Informationstechnologie

Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke

15.12.2017 | Verfahrenstechnologie

Forscher vereinfachen Installation und Programmierung von Robotersystemen

15.12.2017 | Energie und Elektrotechnik