Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017

Forschungsergebnisse des CERN liefern keinen Beweis für die Existenz von solaren Axionen

Axionen sind Teilchen, deren hypothetische Existenz 1977 von Roberto Peccei und Helen Quinn eingeführt worden ist. Neuerdings sind die Teilchen in aller Munde, weil ihre Existenz einen Großteil der so genannten Dunklen Materie erklären könnte.


In der blauen Röhre des CERN Axion Solar Telescope (CAST) befindet sich ein Magnet, mit dem die Wissenschaftler Axionen von der Sonne abfangen wollen. Foto: CERN

Um eine sichere Aussage darüber zu machen, messen Forschende die Wechselwirkung von Axionen und Photonen. Ein Team von internationalen Wissenschaftlerinnen und Wissenschaftlern des Projekts CERN Axion Solar Telescope (CAST) am europäischen Forschungszentrum CERN in Genf/Schweiz, darunter Prof. Dr. Horst Fischer vom Physikalischen Institut der Universität Freiburg, hat nun die bislang engsten Grenzen bezüglich der Wahrscheinlichkeit aufgestellt, dass sich Axionen in Photonen umwandeln.

Ihre Ergebnisse präsentieren sie in der aktuellen Ausgabe der Zeitschrift „Nature Physics“.

Seit 2003 richtet die Projektgruppe morgens und abends für jeweils 90 Minuten ihr Teleskop auf die Sonne, um damit nach Axionen zu suchen. Das Teleskop ist mit einem Magneten ausgestattet, den Mitarbeiterinnen und Mitarbeiter des CERN ursprünglich für den Large Hadron Collider gebaut haben.

Theoretischen Überlegungen zufolge ist die Sonne einer der Orte, an der sich Axionen bilden. Werden diese von dem Teleskop eingefangen, soll das Magnetfeld sie in Photonen umwandeln. Diese könnten die Forschenden mit hochempfindlichen und extrem rauscharmen Sensoren messen.

Erst wenn sich feststellen lässt, dass sich Axionen in Photonen umwandeln, können Forschende den Anteil der Teilchen an der Dunklen Materie bestimmen. In der veröffentlichten Arbeit, die auf Daten aus den Jahren 2012 bis 2015 basiert, findet das Team keinen Beweis für solare Axionen.

Auf dieser Grundlage hat es die bisher engsten Grenzen bezüglich der Stärke der Wechselwirkung zwischen Axionen und Photonen aufgestellt. Das Ergebnis hat auch unmittelbare Konsequenzen für das tiefere Verständnis verschiedener astrophysikalischer Anomalien wie zum Beispiel der Ausbreitung von kurzwelliger Gammastrahlung im Universum oder der effizienten Wärmeabfuhr in Sternen.

Derzeit wird das Experiment umgebaut, um zukünftig Überreste von Axionen aus den Zeiten des Urknalls sowie Teilchen der Dunklen Energie nachzuweisen.

Originalpublikation:
New CAST limit on the axion–photon interaction, CAST Collaboration, doi:10.1038/nphys4109,
https://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys4109.html

Video zum CERN Axion Solar Telescope (CAST):
https://cds.cern.ch/record/2053255

Kontakt:
Prof. Dr. Horst Fischer
Physikalisches Institut
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-5813
E-Mail: horst.fischer@cern.ch

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm/2017/cast-projekt-setzt-dunkler-materie-neue-g...

Rudolf-Werner Dreier | Albert-Ludwigs-Universität Freiburg im Breisgau

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie