Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Buntes Licht zähmt Teilchen

18.11.2014

Physiker haben untersucht, wie sich bewegliche Teilchen in einem Lichtsammelsystem verhalten, wenn sie gleichzeitig mit unterschiedlichen Lasern bestrahlt werden. Ihre überraschenden Ergebnisse haben sie nun in der neuen Online-Zeitschrift Optica der Optical Society veröffentlicht.

Wie schon Albert Einstein erkannte, besitzen Lichtteilchen (Photonen) nicht nur Energie sondern auch Impuls. Sie üben daher auch Kräfte auf materielle Teilchen aus.


Adaptive multifrequency light collection by self-ordered mobile scatterers in optical resonators

Valentin Torggler and Helmut Ritsch

Füllt man Atome, Moleküle oder Nanoteilchen in einen optischen Resonator und bestrahlt diesen mit Laserlicht, erzeugen diese Kräfte eine verblüffend komplexe Dynamik.

„Die Teilchen streuen das Laserlicht in den Resonator und erzeugen damit gleichzeitig ihre eigene optische Falle“, erklären Valentin Torggler und Helmut Ritsch vom Institut für Theoretische Physik der Universität Innsbruck. „Um ihre Energie zu minimieren, gehen sie in eine regelmäßige, geordnete Anordnung über.“

Diese Selbstorganisation von polarisierbaren Teilchen in Resonatoren ist für einen Laserstrahl bekannt und auch bereits experimentell nachgewiesen worden. Nun wollten die Innsbrucker Theoretiker wissen, wie sich die Teilchen verhalten, wenn sie gleichzeitig mit mehreren Lasern unterschiedlicher Farbe beleuchtet werden.

Gleichgewicht „lernen“

Wie ihre Simulationen zeigen, wird das Laserlicht dabei in verschiedenste Lichtmoden unterschiedlicher Frequenz gestreut. Die Lichtfelder dieser Moden konkurrieren nun darum, die Teilchen in die für sie jeweils günstigste Anordnung zu drängen.

„Diese Dynamik endet in einem stabilen Gleichgewicht“, erzählen Torggler und Ritsch. „Durch Rauschen, wie es in realen, gedämpften Systemen immer präsent ist, können die Teilchen aber ihre Gleichgewichtsposition nach einiger Zeit wieder verlassen und finden dadurch noch stabilere Konfigurationen. In dieser Weise passt sich das System an die vorherrschende Beleuchtung an und fungiert als adaptives Lichtsammelsystem“, sagen die Physiker.

Auch wenn man zufällig zwischen einigen fix gewählten Beleuchtungen hin und her schaltet, steigt die gestreute Gesamtintensität mit der Zeit an und die Teilchen finden schneller einen stabileren Gleichgewichtszustand.

„Diesen Prozess kann man auch als ‚Lernen’ interpretieren: Das System hat Information über eine bestimmte Beleuchtung, die schon einmal oder öfters angewendet wurde, in der Konfiguration der Teilchen abgespeichert und kann somit besser auf diese reagieren“, erläutert Helmut Ritsch dieses faszinierende Verhalten. Die Funktionsweise ähnelt dabei einer bestimmten Form neuronaler Netze.

„Experimentell könnte so ein Aufbau sowohl mit kalten Gasen als auch mit Nanoteilchen in Lösungen realisiert werden“, freut sich Ritsch schon auf die baldige Umsetzung dieser Idee.

Rückfragehinweis:
Univ.-Prof. Mag.Dr. Helmut Ritsch
Institut für Theoretische Physik
Universität Innsbruck
Tel.: +43 512 507-52213
E-Mail: helmut.ritsch@uibk.ac.at


Weitere Informationen:

http://dx.doi.org/10.1364/OPTICA.1.000336  - Adaptive multifrequency light collection by self-ordered mobile scatterers in optical resonators. V. Torggler and H. Ritsch. Optica, 1, 5, 336-342 (2014)
http://www.uibk.ac.at/th-physik/ - Institut für Theoretische Physik, Universität Innsbruck

Dr. Christian Flatz | Universität Innsbruck
Weitere Informationen:
http://www.uibk.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Sterngeburt in den Winden supermassereicher Schwarzer Löcher
28.03.2017 | ESO Science Outreach Network - Haus der Astronomie

nachricht Das anwachsende Ende der Ordnung
27.03.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit